测度与概率

✍ dations ◷ 2025-04-26 17:13:28 #测度与概率
数学上,测度(英语:measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。X {displaystyle X} 是个集合,定义在 X {displaystyle X} 上的另一集合 A {displaystyle {mathcal {A}}} , A {displaystyle {mathcal {A}}} 中的元素是 X {displaystyle X} 的子集合,而且是一个'"`UNIQ--templatestyles-00000006-QINU`"' σ-代数,测度 μ {displaystyle mu } (详细的说法是可数可加的正测度)是个定义在 A {displaystyle {mathcal {A}}} 上的函数,于 [ 0 , ∞ ] {displaystyle } 中取值,且满足以下性质:这样的三元组 ( X , A , μ ) {displaystyle (X,{mathcal {A}},mu )} 称为一个测度空间,而 A {displaystyle {mathcal {A}}} 中的元素称为这个空间中的可测集合。下面的一些性质可从测度的定义导出:测度 μ   {displaystyle mu } 的单调性: 若 E 1   {displaystyle E_{1} } 和 E 2   {displaystyle E_{2} } 为可测集,而且 E 1 ⊆ E 2 {displaystyle E_{1}subseteq E_{2}} ,则 μ ( E 1 ) ≤ μ ( E 2 ) {displaystyle mu (E_{1})leq mu (E_{2})} 。若 E 1 , E 2 , E 3 ⋯ {displaystyle E_{1},E_{2},E_{3}cdots } 为可测集(不必是两两不交的),则集合 E n   {displaystyle E_{n} } 的并集是可测的,且有如下不等式(“次可列可加性”):如果还满足并且对于所有的 n   {displaystyle n } , E n   {displaystyle E_{n} } ⊆ E n + 1   {displaystyle E_{n+1} } ,则如下极限式成立:若 E 1 , E 2 , ⋯ {displaystyle E_{1},E_{2},cdots } 为可测集,并且对于所有的 n   {displaystyle n } , E n + 1   {displaystyle E_{n+1} } ⊆ E n   {displaystyle E_{n} } ,则 E n   {displaystyle E_{n} } 的交集是可测的。进一步说,如果至少一个 E n   {displaystyle E_{n} } 的测度有限,则有极限:如若不假设至少一个 E n   {displaystyle E_{n} } 的测度有限,则上述性质一般不成立。例如对于每一个 n ∈ N {displaystyle nin mathbb {N} } ,令这里,全部集合都具有无限测度,但它们的交集是空集。如果 μ ( X )   {displaystyle mu (X) } 是一个有限实数(而不是 ∞ {displaystyle infty } ),则测度空间 ( X , A , μ ) {displaystyle (X,{mathcal {A}},mu )} 称为有限测度空间。非零的有限测度与概率测度类似,因为可以通过乘上比例因子 1 μ ( X ) {displaystyle {frac {1}{mu (X)}}} 进行归一化。如果 X   {displaystyle X } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为 σ {displaystyle sigma } -有限测度空间。如果测度空间中的一个集合 A   {displaystyle A } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,就称 A   {displaystyle A } 具有 σ {displaystyle sigma } -有限测度。作为例子,实数集赋以标准勒贝格测度是 σ {displaystyle sigma } -有限的,但不是有限的。为说明之,只要考虑闭区间族,k取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为 ∞ {displaystyle infty } 。这样的测度空间就不是 σ {displaystyle sigma } -有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。 σ {displaystyle sigma } -有限的测度空间有些很好的性质;从这点上说, σ {displaystyle sigma } -有限性可以类比于拓扑空间的可分性。对于一个可测集 N {displaystyle N} ,若 μ ( N ) = 0   {displaystyle mu (N)=0 } 成立,则称为零测集,其子集称为可去集。一个可去集未必是可测的,但零测集一定是可去集。如果所有的可去集都可测,则称该测度为完备测度。一个测度可以按如下的方式延拓为完备测度:考虑 X {displaystyle X} 的所有与某个可测集 E {displaystyle E} 仅差一个可去集的子集 F {displaystyle F} ,可得到 E {displaystyle E} 与 F {displaystyle F} 的对称差包含于一个零测集中。由这些子集 F {displaystyle F} 生成的σ代数,并定义 μ ( F ) = μ ( E ) {displaystyle mu (F)=mu (E)} ,所得到的测度即为完备测度。下列是一些测度的例子(顺序与重要性无关)。其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。

相关

  • 中东呼吸综合症冠状病毒中东呼吸系统综合征冠状病毒是导致中东呼吸系统综合征的病原体(英文缩写:MERS-CoV 或代号:EMC/2012‘HCoV-EMC/2012’)引起,有别于严重急性呼吸系统综合征冠状病毒和普通伤风冠状
  • 动脉导管动脉导管(拉丁语:Ductus arteriosus,DA)是胎体循环中使来自胎盘之充氧血绕过尚未发育完全、无功能的肺脏,直接供应体循环的岔道(shunt)。与其有相似功能的发育构造为卵圆孔(Foreman
  • 无神论者的赌注对宗教的批评 · 自由思想反教权主义 · 反宗教虚构宗教无神论者的赌注,因迈克尔·马丁(英语:Michael Martin (philosopher))发表在他1990年出版的书《无神论:哲学的正信》中而
  • 格言格言又称箴言,可以作为人们行为规范的言简意赅的语句,因其不仅凝聚古圣先贤的人生智慧,同时具备简练生动的表达方式。从句法结构角度说,格言是相对完整、相对独立的句子,可以独立
  • 理查·欧文理查·欧文爵士,KCB,FRS,FMRS(英语:Sir Richard Owen,1804年7月20日-1892年12月18日),英国生物学家、比较解剖学家与古生物学家,皇家学会成员,曾经对许多脊椎动物进行分类与命名。理查
  • 萨克曼伯特·萨克曼(德语:Bert Sakmann,1942年6月12日-),德国细胞生理学家。1991年,他与厄温·内尔一同夺得诺贝尔生理学或医学奖。1901年:贝林  1902年:罗斯  1903年:芬森  1904年:巴
  • 特立尼达蝎子壮汉T辣椒特立尼达毒蝎布奇T辣椒又名特立尼达蝎子壮汉T辣椒、特立尼达毒蝎辣椒(Trinidad Scorpion Butch T pepper),曾是世界纪录最辣的辣椒,该记录在2012年被卡罗莱纳死神超越。它是黄灯
  • 美国采暖、制冷与空调工程师学会美国采暖、制冷与空调工程师学会(American Society of Heating, Refrigerating and Air-Conditioning Engineers)简称ASHRAE,于1894年在美国纽约成立,是由暖通空调(HVAC)工程师所
  • 阿拉巴马截至2010年亚拉巴马州(英语:Alabama,i/ˌæləˈbæmə/,又译作阿拉巴马州)是美国东南部地区一个联邦州。北接田纳西州,东邻乔治亞州,南至佛罗里达州和墨西哥湾,西临密西西比州。亚
  • 恋腋窝恋腋窝(英语:Armpit fetishism、maschalagnia)是一种恋物癖形式,指个人对腋窝有性的偏好,这可能会致使腋交(使用腋窝进行性行为)天生的体味是可以构成强而有力的性吸引力,而腋窝的气