首页 >
测度与概率
✍ dations ◷ 2025-06-07 10:48:03 #测度与概率
数学上,测度(英语:measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。X
{displaystyle X}
是个集合,定义在
X
{displaystyle X}
上的另一集合
A
{displaystyle {mathcal {A}}}
,
A
{displaystyle {mathcal {A}}}
中的元素是
X
{displaystyle X}
的子集合,而且是一个'"`UNIQ--templatestyles-00000006-QINU`"'
σ-代数,测度
μ
{displaystyle mu }
(详细的说法是可数可加的正测度)是个定义在
A
{displaystyle {mathcal {A}}}
上的函数,于
[
0
,
∞
]
{displaystyle }
中取值,且满足以下性质:这样的三元组
(
X
,
A
,
μ
)
{displaystyle (X,{mathcal {A}},mu )}
称为一个测度空间,而
A
{displaystyle {mathcal {A}}}
中的元素称为这个空间中的可测集合。下面的一些性质可从测度的定义导出:测度
μ
{displaystyle mu }
的单调性:
若
E
1
{displaystyle E_{1} }
和
E
2
{displaystyle E_{2} }
为可测集,而且
E
1
⊆
E
2
{displaystyle E_{1}subseteq E_{2}}
,则
μ
(
E
1
)
≤
μ
(
E
2
)
{displaystyle mu (E_{1})leq mu (E_{2})}
。若
E
1
,
E
2
,
E
3
⋯
{displaystyle E_{1},E_{2},E_{3}cdots }
为可测集(不必是两两不交的),则集合
E
n
{displaystyle E_{n} }
的并集是可测的,且有如下不等式(“次可列可加性”):如果还满足并且对于所有的
n
{displaystyle n }
,
E
n
{displaystyle E_{n} }
⊆
E
n
+
1
{displaystyle E_{n+1} }
,则如下极限式成立:若
E
1
,
E
2
,
⋯
{displaystyle E_{1},E_{2},cdots }
为可测集,并且对于所有的
n
{displaystyle n }
,
E
n
+
1
{displaystyle E_{n+1} }
⊆
E
n
{displaystyle E_{n} }
,则
E
n
{displaystyle E_{n} }
的交集是可测的。进一步说,如果至少一个
E
n
{displaystyle E_{n} }
的测度有限,则有极限:如若不假设至少一个
E
n
{displaystyle E_{n} }
的测度有限,则上述性质一般不成立。例如对于每一个
n
∈
N
{displaystyle nin mathbb {N} }
,令这里,全部集合都具有无限测度,但它们的交集是空集。如果
μ
(
X
)
{displaystyle mu (X) }
是一个有限实数(而不是
∞
{displaystyle infty }
),则测度空间
(
X
,
A
,
μ
)
{displaystyle (X,{mathcal {A}},mu )}
称为有限测度空间。非零的有限测度与概率测度类似,因为可以通过乘上比例因子
1
μ
(
X
)
{displaystyle {frac {1}{mu (X)}}}
进行归一化。如果
X
{displaystyle X }
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为
σ
{displaystyle sigma }
-有限测度空间。如果测度空间中的一个集合
A
{displaystyle A }
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,就称
A
{displaystyle A }
具有
σ
{displaystyle sigma }
-有限测度。作为例子,实数集赋以标准勒贝格测度是
σ
{displaystyle sigma }
-有限的,但不是有限的。为说明之,只要考虑闭区间族,k取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为
∞
{displaystyle infty }
。这样的测度空间就不是
σ
{displaystyle sigma }
-有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。
σ
{displaystyle sigma }
-有限的测度空间有些很好的性质;从这点上说,
σ
{displaystyle sigma }
-有限性可以类比于拓扑空间的可分性。对于一个可测集
N
{displaystyle N}
,若
μ
(
N
)
=
0
{displaystyle mu (N)=0 }
成立,则称为零测集,其子集称为可去集。一个可去集未必是可测的,但零测集一定是可去集。如果所有的可去集都可测,则称该测度为完备测度。一个测度可以按如下的方式延拓为完备测度:考虑
X
{displaystyle X}
的所有与某个可测集
E
{displaystyle E}
仅差一个可去集的子集
F
{displaystyle F}
,可得到
E
{displaystyle E}
与
F
{displaystyle F}
的对称差包含于一个零测集中。由这些子集
F
{displaystyle F}
生成的σ代数,并定义
μ
(
F
)
=
μ
(
E
)
{displaystyle mu (F)=mu (E)}
,所得到的测度即为完备测度。下列是一些测度的例子(顺序与重要性无关)。其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。
相关
- 分娩分娩(childbirth)也称为生产,是指妇女怀孕之后,一个或多个胎儿离开母亲子宫,开始在子宫外生活的过程,可能是经由阴道的阴道分娩,也可能是剖宫产。全世界在2015年时有1.35亿人出生,其
- 药代动力学药物代谢动力学(英语:Pharmacokinetics),简称药代动力学或药动学,也简称为PK,是药理学的分支,研究药物在机体的影响下所发生的变化及其规律,其中的药物包括药剂、激素、营养素和毒素
- 中世纪拉丁语中世纪拉丁语(英语:Medieval Latin)是在欧洲中世纪时期使用的拉丁语。它继承自后期拉丁语,从4-5世纪一直延续到约公元15世纪,才为文艺复兴拉丁语所取代。这一阶段拉丁语仍然是教
- 书法中国书法是汉字的书写艺术,也是东亚书法的代表。所以以文字为基准的角度看,中国书法是一种很独特的视觉艺术,但是这种独特性并不妨碍不认识中文字体的人欣赏中国书法。汉字是中
- 子宫切除手术子宫切除术(hysterectomy)指的通常是由妇产科医生进行的切除子宫的手术。它可分为整个(包括整个子宫和子宫颈)或部分切除。在普遍的情况下,切除卵巢需要与切除子宫手术同时进行。
- 质子发射质子发射(也称为质子放射性)是一种放射性衰变类型,其中一个质子被从原子核中发射。质子发射可以发生在一个原子核从高激发态之后的一个β衰变,在这种情况下,该过程被称为β-延迟
- 单晶单晶是指其内部微粒有规律地排列在一个空间格子内的晶体。其晶体结构是连续的,或者可以说,在宏观尺度范围内单晶不包含晶界。与单晶相对的,是众多晶粒组成的多晶。单晶材料是一
- DNA聚合酶III全酶DNA聚合酶III(英语:DNA polymerase III holoenzyme),是原核生物进行DNA复制时主要使用的一种酶。该酶于1970年由托马斯·科恩伯格(英语:Thomas B. Kornberg)发现。这种酶复合物具有
- 第十一王朝第八第十埃及第十一王朝是古埃及历史上第一中间时期的一个王朝,其首都位于底比斯。
- 宇宙微波背景辐射宇宙微波背景(英语:Cosmic Microwave Background,简称CMB,又称3K背景辐射)是宇宙学中“大爆炸”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”(CMBR