测度与概率

✍ dations ◷ 2025-04-25 02:44:03 #测度与概率
数学上,测度(英语:measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。X {displaystyle X} 是个集合,定义在 X {displaystyle X} 上的另一集合 A {displaystyle {mathcal {A}}} , A {displaystyle {mathcal {A}}} 中的元素是 X {displaystyle X} 的子集合,而且是一个'"`UNIQ--templatestyles-00000006-QINU`"' σ-代数,测度 μ {displaystyle mu } (详细的说法是可数可加的正测度)是个定义在 A {displaystyle {mathcal {A}}} 上的函数,于 [ 0 , ∞ ] {displaystyle } 中取值,且满足以下性质:这样的三元组 ( X , A , μ ) {displaystyle (X,{mathcal {A}},mu )} 称为一个测度空间,而 A {displaystyle {mathcal {A}}} 中的元素称为这个空间中的可测集合。下面的一些性质可从测度的定义导出:测度 μ   {displaystyle mu } 的单调性: 若 E 1   {displaystyle E_{1} } 和 E 2   {displaystyle E_{2} } 为可测集,而且 E 1 ⊆ E 2 {displaystyle E_{1}subseteq E_{2}} ,则 μ ( E 1 ) ≤ μ ( E 2 ) {displaystyle mu (E_{1})leq mu (E_{2})} 。若 E 1 , E 2 , E 3 ⋯ {displaystyle E_{1},E_{2},E_{3}cdots } 为可测集(不必是两两不交的),则集合 E n   {displaystyle E_{n} } 的并集是可测的,且有如下不等式(“次可列可加性”):如果还满足并且对于所有的 n   {displaystyle n } , E n   {displaystyle E_{n} } ⊆ E n + 1   {displaystyle E_{n+1} } ,则如下极限式成立:若 E 1 , E 2 , ⋯ {displaystyle E_{1},E_{2},cdots } 为可测集,并且对于所有的 n   {displaystyle n } , E n + 1   {displaystyle E_{n+1} } ⊆ E n   {displaystyle E_{n} } ,则 E n   {displaystyle E_{n} } 的交集是可测的。进一步说,如果至少一个 E n   {displaystyle E_{n} } 的测度有限,则有极限:如若不假设至少一个 E n   {displaystyle E_{n} } 的测度有限,则上述性质一般不成立。例如对于每一个 n ∈ N {displaystyle nin mathbb {N} } ,令这里,全部集合都具有无限测度,但它们的交集是空集。如果 μ ( X )   {displaystyle mu (X) } 是一个有限实数(而不是 ∞ {displaystyle infty } ),则测度空间 ( X , A , μ ) {displaystyle (X,{mathcal {A}},mu )} 称为有限测度空间。非零的有限测度与概率测度类似,因为可以通过乘上比例因子 1 μ ( X ) {displaystyle {frac {1}{mu (X)}}} 进行归一化。如果 X   {displaystyle X } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为 σ {displaystyle sigma } -有限测度空间。如果测度空间中的一个集合 A   {displaystyle A } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,就称 A   {displaystyle A } 具有 σ {displaystyle sigma } -有限测度。作为例子,实数集赋以标准勒贝格测度是 σ {displaystyle sigma } -有限的,但不是有限的。为说明之,只要考虑闭区间族,k取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为 ∞ {displaystyle infty } 。这样的测度空间就不是 σ {displaystyle sigma } -有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。 σ {displaystyle sigma } -有限的测度空间有些很好的性质;从这点上说, σ {displaystyle sigma } -有限性可以类比于拓扑空间的可分性。对于一个可测集 N {displaystyle N} ,若 μ ( N ) = 0   {displaystyle mu (N)=0 } 成立,则称为零测集,其子集称为可去集。一个可去集未必是可测的,但零测集一定是可去集。如果所有的可去集都可测,则称该测度为完备测度。一个测度可以按如下的方式延拓为完备测度:考虑 X {displaystyle X} 的所有与某个可测集 E {displaystyle E} 仅差一个可去集的子集 F {displaystyle F} ,可得到 E {displaystyle E} 与 F {displaystyle F} 的对称差包含于一个零测集中。由这些子集 F {displaystyle F} 生成的σ代数,并定义 μ ( F ) = μ ( E ) {displaystyle mu (F)=mu (E)} ,所得到的测度即为完备测度。下列是一些测度的例子(顺序与重要性无关)。其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。

相关

  • 苏美尔语幼发拉底河 · 底格里斯河乌鲁克 · 乌尔 · 埃利都 启什 · 拉格什 · 尼普尔 阿卡德帝国 · 库提 乌尔第三王朝 · 伊辛第一王朝 · 拉尔萨 · 伊辛第二王朝古巴比
  • 塞尔维亚-克罗地亚语塞尔维亚-克罗地亚语(塞尔维亚语:Српскохрватски језик,转写:Srpskohrvatski jezik),是通行在东南欧巴尔干半岛前南斯拉夫诸国的语言。现由于政治因素,该语言在
  • 周边动脉阻塞周边动脉疾病(Peripheral artery disease, PAD),可以称为周边血管疾病(Peripheral vascular disease, PVD)、周边动脉阻塞性疾病(Peripheral artery occlusive disease, PAOD),或是
  • 卢·贾里格亨利·路易斯·贾里格(英语:Henry Louis Gehrig,1903年6月19日-1941年6月2日)是美国职棒大联盟史上最伟大的一垒手,职棒生涯都效力于纽约洋基。贾里格生涯以稳定性高、不易受伤著
  • 第五产业第五产业,指体现出文化与创意的产业,包括文化产业与创意产业(或合称文化创意产业),为“克拉克大分类法”(第一产业:农业、第二产业:工业、第三产业:除第一、二产业外的所有其他产业)与
  • 菱钴矿碳酸钴(化学式:CoCO3)是钴(Ⅱ)的碳酸盐。红色单斜晶系结晶或粉末。几乎不溶于水、醇、乙酸甲酯和氨水,可溶于酸,但不与冷的浓盐酸或浓硝酸作用。400°C 以上开始分解,放出二氧化碳
  • 盐类盐在化学中,是指一类金属离子或铵根离子(NH4+)与酸根离子或非金属离子结合的化合物,如硫酸钙,氯化铜,醋酸钠,一般来说盐是复分解反应的生成物,如硫酸与氢氧化钠生成硫酸钠和水,也有其
  • 天基动能武器天基动能武器是一种处于概念阶段的大规模毁灭性武器,基于所有必备科技在理论上已经实现,非属科幻领域,而应视为近未来概念武器。其构想最早来自美国星战计划概念提出后,世界上许
  • 丕平王朝加洛林王朝(法语:les Carolingiens,旧称Carlovingiens,中世纪拉丁语:Karolingi,又译卡洛林王朝)是自公元751年后统治法兰克王国的王朝。在此之前,其王朝成员以“宫相”的身份涉理王
  • 键盘键盘是经过系统安排操作一台机器或设备的一组键,主要功能则是输入数据。电脑键盘是电脑的外设之一,由打字机键盘发展而来。通过键盘可以输入字符,也可控制电脑的运行。依照键盘