首页 >
测度与概率
✍ dations ◷ 2025-09-16 21:18:05 #测度与概率
数学上,测度(英语:measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。X
{displaystyle X}
是个集合,定义在
X
{displaystyle X}
上的另一集合
A
{displaystyle {mathcal {A}}}
,
A
{displaystyle {mathcal {A}}}
中的元素是
X
{displaystyle X}
的子集合,而且是一个'"`UNIQ--templatestyles-00000006-QINU`"'
σ-代数,测度
μ
{displaystyle mu }
(详细的说法是可数可加的正测度)是个定义在
A
{displaystyle {mathcal {A}}}
上的函数,于
[
0
,
∞
]
{displaystyle }
中取值,且满足以下性质:这样的三元组
(
X
,
A
,
μ
)
{displaystyle (X,{mathcal {A}},mu )}
称为一个测度空间,而
A
{displaystyle {mathcal {A}}}
中的元素称为这个空间中的可测集合。下面的一些性质可从测度的定义导出:测度
μ
{displaystyle mu }
的单调性:
若
E
1
{displaystyle E_{1} }
和
E
2
{displaystyle E_{2} }
为可测集,而且
E
1
⊆
E
2
{displaystyle E_{1}subseteq E_{2}}
,则
μ
(
E
1
)
≤
μ
(
E
2
)
{displaystyle mu (E_{1})leq mu (E_{2})}
。若
E
1
,
E
2
,
E
3
⋯
{displaystyle E_{1},E_{2},E_{3}cdots }
为可测集(不必是两两不交的),则集合
E
n
{displaystyle E_{n} }
的并集是可测的,且有如下不等式(“次可列可加性”):如果还满足并且对于所有的
n
{displaystyle n }
,
E
n
{displaystyle E_{n} }
⊆
E
n
+
1
{displaystyle E_{n+1} }
,则如下极限式成立:若
E
1
,
E
2
,
⋯
{displaystyle E_{1},E_{2},cdots }
为可测集,并且对于所有的
n
{displaystyle n }
,
E
n
+
1
{displaystyle E_{n+1} }
⊆
E
n
{displaystyle E_{n} }
,则
E
n
{displaystyle E_{n} }
的交集是可测的。进一步说,如果至少一个
E
n
{displaystyle E_{n} }
的测度有限,则有极限:如若不假设至少一个
E
n
{displaystyle E_{n} }
的测度有限,则上述性质一般不成立。例如对于每一个
n
∈
N
{displaystyle nin mathbb {N} }
,令这里,全部集合都具有无限测度,但它们的交集是空集。如果
μ
(
X
)
{displaystyle mu (X) }
是一个有限实数(而不是
∞
{displaystyle infty }
),则测度空间
(
X
,
A
,
μ
)
{displaystyle (X,{mathcal {A}},mu )}
称为有限测度空间。非零的有限测度与概率测度类似,因为可以通过乘上比例因子
1
μ
(
X
)
{displaystyle {frac {1}{mu (X)}}}
进行归一化。如果
X
{displaystyle X }
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为
σ
{displaystyle sigma }
-有限测度空间。如果测度空间中的一个集合
A
{displaystyle A }
可以表示为可数个可测集的并集,而且这些可测集的测度均有限,就称
A
{displaystyle A }
具有
σ
{displaystyle sigma }
-有限测度。作为例子,实数集赋以标准勒贝格测度是
σ
{displaystyle sigma }
-有限的,但不是有限的。为说明之,只要考虑闭区间族,k取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为
∞
{displaystyle infty }
。这样的测度空间就不是
σ
{displaystyle sigma }
-有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。
σ
{displaystyle sigma }
-有限的测度空间有些很好的性质;从这点上说,
σ
{displaystyle sigma }
-有限性可以类比于拓扑空间的可分性。对于一个可测集
N
{displaystyle N}
,若
μ
(
N
)
=
0
{displaystyle mu (N)=0 }
成立,则称为零测集,其子集称为可去集。一个可去集未必是可测的,但零测集一定是可去集。如果所有的可去集都可测,则称该测度为完备测度。一个测度可以按如下的方式延拓为完备测度:考虑
X
{displaystyle X}
的所有与某个可测集
E
{displaystyle E}
仅差一个可去集的子集
F
{displaystyle F}
,可得到
E
{displaystyle E}
与
F
{displaystyle F}
的对称差包含于一个零测集中。由这些子集
F
{displaystyle F}
生成的σ代数,并定义
μ
(
F
)
=
μ
(
E
)
{displaystyle mu (F)=mu (E)}
,所得到的测度即为完备测度。下列是一些测度的例子(顺序与重要性无关)。其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。
相关
- H2受体阻抗剂H2受体阻抗剂(英语:H2 antagonist)是一系列用于阻断组织胺作用于胃壁细胞、减少壁细胞分泌胃酸的药物。H2受体阻抗剂用于治疗消化不良,但现在已经有效果更好的氢离子泵阻断剂。
- Ba6s22,8,18,18,8,2蒸气压第一:502.9 kJ·mol−1 第二:965.2 kJ·mol−1 第三:3600 kJ·mol主条目:钡的同位素钡(Barium)是化学元素周期表中的元素,它的原子序数是56,化学符号是Ba。它
- 甲状会厌韧带甲状会厌韧带(thyroepiglottic ligament)为喉部的韧带。它将会厌长而窄的附着物部分或茎部连接到由甲状软骨的两个层板形成的角部处,即在甲状软骨切口的上方短距离内。本条目包
- 甘油三酯甘油三酯(triglyceride, TG, triacylglycerol, TAG, or triacylglyceride),亦作三酸甘油酯,常称为油脂,为动物性油脂与植物性油脂的主要成分,一种由一个甘油分子和三个脂肪酸分子
- 植物考察植物考察(英语:Botanical expedition)是形容为了研究一特定区域的植物所进行的科学考察旅行。一个植物考察的目的可能是设计在探索某一种特定植物群,又或可以是专注于讨论一个地
- 彐彐部,为汉字索引里为部首之一,康熙字典214个部首中的第五十八个(三划的则为第二十九个)。解作豕之头。对中文而言,彐部均为三画。彐部通常是从上、下、左方均可为部字,其部字在某
- 萤光鱼萤光鱼是一种经过转基因而培育成功的新种观赏鱼,因为植入水母的萤光基因而能发出蓝、绿、黄、红等不同颜色的萤光。这种新品种的斑马鱼是由新加坡国立大学生物科学系的教授龚
- 花旗参花旗参(学名:Panax quinquefolius)是人参的一种。原产于美国北部到加拿大南部一带,以威斯康辛州为主。美国旧称为花旗国,花旗参由此得名。此外,它又称为洋参、西洋参、野山泡参 、
- 让·拉辛让·拉辛(法语:Jean Racine,1639年12月22日-1699年4月21日),法国剧作家,与高乃依和莫里哀合称十七世纪最伟大的三位法国剧作家。拉辛出身于一个小官员家庭,自幼父母双亡,被外祖母和舅
- 肘后方《肘后方》,原名《肘后救卒方》,东晋葛洪编著,又称《肘后备急方》,共八卷70篇,为中医方剂学名著。这是葛洪将他在广东时编著的一本方剂书《金匮药方》(一作《玉函方》),其中撷取出的