信使核糖核酸(英语:messenger RNA,缩写:mRNA),是由DNA经由转录而来,带着相应的遗传讯息,为下一步翻译成蛋白质提供所需的讯息。在细胞中,mRNA从合成到被降解,经过了数个步骤。在转录的过程中,第二型RNA聚合酶(RNA polymerase II)从DNA中复制出一段遗传讯息到前mRNA(尚未经过修饰或是部分经过修饰的mRNA,称作pre-messenger RNA,pre-mRNA,或是heterogeneous nuclear RNA,hnRNA)上。在原核生物中,除了5'加帽之外mRNA并未被进一步处理(但有些罕有的特例),而经常是边转录边翻译。在真核生物中,转录跟翻译发生在细胞的不同位置,转录发生在储存DNA的细胞核中,而翻译是发生在细胞质中。不过,曾有研究学者认为真核生物亦有边转录边翻译的现象,只是这个观点并未被广泛接受。
在真核生物中,mRNA在准备好翻译前需要经过多个处理步骤:
多聚腺苷酸化(polyadenylation)能增加转录的半生期,使得mRNA在细胞中的存在时间能延长得久一些,因此能再翻译出更多的蛋白质。
在pre-mRNA在被修饰过之后(包含RNA剪接及加上5'端帽与3'端上多聚腺苷酸尾),形成成熟的mRNA,从而可准备进行翻译。成熟mRNA从细胞核被送出到细胞质中,然后核糖体结合在其上,开始翻译出蛋白质。随着时间进行,mRNA的多聚腺苷酸尾会被专门的外切核酸酶缩短,而5'端帽也可能被除去,使得该聚合物易受到核酸外切酵素的影响而被降解。
在RNA起始密码子之前,与终止密码子(stop codon)之后,各有一段非编码区,各被称作5'UTR与3'UTR,(5'与3'非编码区,因为DNA与RNA分子都是由5'端到3'端,也就是说这些区域是在RNA分子的两端)是属于不翻译出蛋白质的序列。然而,这些区域的重要性在于它们的序列有可能借由这些区域与不同的RNA结合蛋白(RNA-binding protein)结合,进而改变在细胞中的位置、决定mRNA的稳定性/半生期,以及对细胞受到刺激时的反应而生的翻译调控。这些都是与细胞调控本身的活性有关。
在UTRs上的某些蛋白质复合物不仅能影响RNA的稳定度,也能促进翻译效率或是抑制翻译,这多是依据位在UTRs上的序列而定。有些在UTR上的基因遗传的变异也会造成上述的RNA稳定度或是翻译效率的改变。
一些包含在UTRs的功能性序列,常能形成一些有特性的二级结构,这些造成二级结构也牵扯到调节mRNA本身。某些序列,像是SECIS,是蛋白质结合区。其中一类的mRNA元素,riboswitches,能直接结合上小分子,改变了mRNA自身的折叠结构,也影响了转录或是翻译作用。另外,有些mRNA的3'UTR含有AU-rich elemnet(ARE),能影响到mRNA的半生期。换句话说,mRNA分子可以进行自我调控。
苯丙氨酸
丝氨酸
酪氨酸
半胱氨酸
亮氨酸
脯氨酸
组氨酸
精氨酸
谷氨酰胺
异亮氨酸
苏氨酸
天冬酰胺
丝氨酸
赖氨酸
精氨酸
甲硫氨酸
缬氨酸
丙氨酸
天冬氨酸
甘氨酸
谷氨酸
在许多真核生物中,当反义RNA上的碱基与基因的某段mRNA互补时,反义RNA可以抑制翻译。反义RNA存在于细胞中之时,其互补的基因就不会合成蛋白质。这也许是一种对抗逆转录转座子或病毒复制的一种机制(retrotransposons是以双股RNA作中介状态的转座子),因为这两者都能使用双链RNA当中介物。在生物化学的研究中,借由使用一段反义mRNA使得标靶mRNA无法作用(RNA干扰),这种方法已经被广泛用于研究基因的功能;例如利用RNA干扰技术,秀丽隐杆线虫中所有基因的作用几乎已经被研究完了。