线性化

✍ dations ◷ 2025-08-18 20:17:13 #微分学,动力系统,近似

数学上的线性化(linearization)是找函数在特定点的线性近似,也就是函数在该点的一阶泰勒级数。在动力系统研究中,线性化是分析非线性微分方程系统或是非线性离散系统,在特定平衡点局部稳定性的一种方法。 此方法常应用在工程学、物理学、经济学及生态学的应用中。

函数的线性化为线性函数。针对函数 y = f ( x ) {\displaystyle y=f(x)} ,若要用在任意点 x = a {\displaystyle x=a} 下的值及其图形斜率来进行近似时,假设 f ( x ) {\displaystyle f(x)} {\displaystyle } (或 {\displaystyle } )区间内可微,且b邻近a,线性化是可以有效近似的方法。简单来说,线性化就是在 x = a {\displaystyle x=a} 点附近,以直线来近似函数的值。例如 4 = 2 {\displaystyle {\sqrt {4}}=2} ,那么针对 4.001 = 4 + .001 {\displaystyle {\sqrt {4.001}}={\sqrt {4+.001}}} ,利用线性化就可能可以找到理想的近似公式。

针对任意函数 y = f ( x ) {\displaystyle y=f(x)} f ( x ) {\displaystyle f(x)} 在已知可微分点附近的位置,都可以被近似。最基本的要求是 L a ( a ) = f ( a ) {\displaystyle L_{a}(a)=f(a)} ,其中 L a ( x ) {\displaystyle L_{a}(x)} f ( x ) {\displaystyle f(x)} x = a {\displaystyle x=a} 的线性化。一次方程的图形会形成直线,例如通过点 ( H , K ) {\displaystyle (H,K)} ,斜率为 M {\displaystyle M} 为直线。方程式的一般形为 y K = M ( x H ) {\displaystyle y-K=M(x-H)}

若是配合点 ( a , f ( a ) ) {\displaystyle (a,f(a))} L a ( x ) {\displaystyle L_{a}(x)} 即变成 y = f ( a ) + M ( x a ) {\displaystyle y=f(a)+M(x-a)} 。因为可微分函数是局部线性,该点的斜率可以用 f ( x ) {\displaystyle f(x)} 在点 x = a {\displaystyle x=a} 切线的斜率来代替。

函数局部线性的意思也表示函数图形上的点可以任意接近点 x = a {\displaystyle x=a} ,相对来说比较接近的点,其线性近似的效果也会比较好。斜率 M {\displaystyle M} 最准确的值会是在 x = a {\displaystyle x=a} 点的切线斜率。

旁边的图可以说明 f ( x ) {\displaystyle f(x)} 在点 x {\displaystyle x} 的切线。在 f ( x + h ) {\displaystyle f(x+h)} 位置,其中 h {\displaystyle h} 是小的正值或是负值, f ( x + h ) {\displaystyle f(x+h)} 非常接近 ( x + h , L ( x + h ) ) {\displaystyle (x+h,L(x+h))} 点的切线。

函数在点 x = a {\displaystyle x=a} 线性化的最终方程为:

y = ( f ( a ) + f ( a ) ( x a ) ) {\displaystyle y=(f(a)+f'(a)(x-a))}

针对 x = a {\displaystyle x=a} f ( a ) = f ( x ) {\displaystyle f(a)=f(x)} 。函数 f ( x ) {\displaystyle f(x)} 的导数为 f ( x ) {\displaystyle f'(x)} ,而函数 f ( x ) {\displaystyle f(x)} 在点 a {\displaystyle a} 的斜率为 f ( a ) {\displaystyle f'(a)}

若要找 4.001 {\displaystyle {\sqrt {4.001}}} ,可以用 4 = 2 {\displaystyle {\sqrt {4}}=2} 的资讯。函数 f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} 在点 x = a {\displaystyle x=a} 的线性化为 y = a + 1 2 a ( x a ) {\displaystyle y={\sqrt {a}}+{\frac {1}{2{\sqrt {a}}}}(x-a)} ,因为函数 f ( x ) = 1 2 x {\displaystyle f'(x)={\frac {1}{2{\sqrt {x}}}}} 定义了函数 f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} 在点 x {\displaystyle x} 的斜率。

代入 a = 4 {\displaystyle a=4} ,其线性化结果为 y = 2 + x 4 4 {\displaystyle y=2+{\frac {x-4}{4}}}

针对 x = 4.001 {\displaystyle x=4.001} 的例子,可得 4.001 {\displaystyle {\sqrt {4.001}}} 近似 2 + 4.001 4 4 = 2.00025 {\displaystyle 2+{\frac {4.001-4}{4}}=2.00025} 。其实际值为2.00024998,非常接近,此线性化的误差小于1%的百万分之一。

函数 f ( x , y ) {\displaystyle f(x,y)} 在点 p ( a , b ) {\displaystyle p(a,b)} 线性化的方程式为:

f ( x , y ) f ( a , b ) + f ( x , y ) x | a , b ( x a ) + f ( x , y ) y | a , b ( y b ) {\displaystyle f(x,y)\approx f(a,b)+\left.{\frac {\partial f(x,y)}{\partial x}}\right|_{a,b}(x-a)+\left.{\frac {\partial f(x,y)}{\partial y}}\right|_{a,b}(y-b)}

多变数函数 f ( x ) {\displaystyle f(\mathbf {x} )} 在点 p {\displaystyle \mathbf {p} } 线性化的通式为

f ( x ) f ( p ) + f | p ( x p ) {\displaystyle f({\mathbf {x} })\approx f({\mathbf {p} })+\left.{\nabla f}\right|_{\mathbf {p} }\cdot ({\mathbf {x} }-{\mathbf {p} })}

其中 x {\displaystyle \mathbf {x} } 是变数向量,而 p {\displaystyle \mathbf {p} } 是要线性化的点。

配合线性化的技术,可以用研究线性系统的工具来分析非线性系统在特定点附近的行为。函数在特定点附近的线性化是在该点附近泰勒级数的一阶展开。针对以下的系统

其线性化系统为

其中 x 0 {\displaystyle \mathbf {x_{0}} } 是要观测的特定点,而 D F ( x 0 ) {\displaystyle D\mathbf {F} (\mathbf {x_{0}} )} F ( x ) {\displaystyle \mathbf {F} (\mathbf {x} )} 在点 x 0 {\displaystyle \mathbf {x_{0}} } 所计算的雅可比矩阵。

在自治系统的稳定性分析中,可以用在双曲平衡点(英语:hyperbolic equilibrium point)计算雅可比矩阵的特征值来判断平衡点的特征。这就是线性化理论(英语:linearization theorem)的内容。若是时变系统,其线性化需要考量其他的因素。

在微观经济学中,决策规则(英语:decision rule)可以用状态空间下线性化的作法来近似。若以此方式分析,效用最大化的欧拉方程可以在平稳稳态附近进行线性化。所得动态方程的系统的唯一解即为其解。

在最优化中,成本函数以及非线性成分都可以线性化,以使用一些线性的求解方式(例如单纯形法)。最佳化的结果可以更有效率的产生,而且是决定性的全域极值。

在多物理场系统(系统中有多个不同物理领域的模型,彼此互相影响)中,可以针对每一个物理领域进行线性化。针对每一个物理领域的线性化可以产生线性的monolithic方程系统,可以用monolithic的迭代来求解(例如牛顿法)。这类的例子包括MRI scanner(英语:MRI scanner)系统,包括了电磁系统、力学系统及声学系统

相关

  • 叶军叶军(1967年11月-),浙江绍兴人,美籍华裔物理学家,美国国家科学院院士。1985-1989年就读于上海交通大学物理系,获得物理学学士学位,1997于美国科罗拉多大学获得物理学博士学位。1999
  • 络脉在中医学概念中,络脉为经脉的分支,以连络表里经脉或脏腑。 络脉有三种,分别为别络、浮络、孙络。
  • 安提戈涅安提戈涅(古希腊语:Ἀντιγόνη),希腊神话中忒拜国王俄狄浦斯的女儿。悲剧作家索福克勒斯和欧里庇得斯都写过以安提戈涅为主角的剧作。安提戈涅是伊俄卡斯忒与其子俄狄浦斯
  • 氧化镉氧化镉是镉的氧化物,分子式为CdO,可致癌。氧化镉可溶于酸,生成 2+;也可溶于碱,生成 2−。
  • 威廉·吉奥克威廉·弗朗西斯·吉奥克(William Francis Giauque,1895年5月12日-1982年3月28日),美国化学家,1949年因对物质在接近绝对零度时表现出的性质的研究而获得诺贝尔化学奖。他在加州大
  • 佛灭日佛灭日,即释迦牟尼佛灭度之日,详细日期众说纷纭。后被引伸为日本系统时历中,六曜(先勝・友引・先負・仏滅・大安・赤口)之一的诸事不宜的大凶之日。北传佛教中的释迦牟尼佛灭度之
  • 南京大学出版社南京大学出版社是隶属于南京大学、1984年成立的出版社,是一家综合性学术出版机构,主要出版学术专著、高校教材、一般图书、教辅图书和少儿类图书等。
  • 奥列格·亚历山大洛维奇·特罗扬诺夫斯基奥列格·亚历山大洛维奇·特罗扬诺夫斯基(俄语:Оле́г Алекса́ндрович Трояно́вский,1919年11月-2003年12月21日),俄罗斯外交官,1958年至1967年苏联
  • 千代田町千代田町(日语:千代田町/ちよだまち  */?)是群马县东南部,邑乐郡的一个人口约1万2千的町。位于“鹤舞形”的颈的位置。
  • 背景音乐背景音乐(background music,简称BGM)是一种配乐,通常指在电视剧、电影、动画、电子游戏、网站中用于调节气氛的音乐,插入于对话之中,能够增强情感的表达,达到一种让观众身历其境的