线性化

✍ dations ◷ 2025-07-09 15:30:51 #微分学,动力系统,近似

数学上的线性化(linearization)是找函数在特定点的线性近似,也就是函数在该点的一阶泰勒级数。在动力系统研究中,线性化是分析非线性微分方程系统或是非线性离散系统,在特定平衡点局部稳定性的一种方法。 此方法常应用在工程学、物理学、经济学及生态学的应用中。

函数的线性化为线性函数。针对函数 y = f ( x ) {\displaystyle y=f(x)} ,若要用在任意点 x = a {\displaystyle x=a} 下的值及其图形斜率来进行近似时,假设 f ( x ) {\displaystyle f(x)} {\displaystyle } (或 {\displaystyle } )区间内可微,且b邻近a,线性化是可以有效近似的方法。简单来说,线性化就是在 x = a {\displaystyle x=a} 点附近,以直线来近似函数的值。例如 4 = 2 {\displaystyle {\sqrt {4}}=2} ,那么针对 4.001 = 4 + .001 {\displaystyle {\sqrt {4.001}}={\sqrt {4+.001}}} ,利用线性化就可能可以找到理想的近似公式。

针对任意函数 y = f ( x ) {\displaystyle y=f(x)} f ( x ) {\displaystyle f(x)} 在已知可微分点附近的位置,都可以被近似。最基本的要求是 L a ( a ) = f ( a ) {\displaystyle L_{a}(a)=f(a)} ,其中 L a ( x ) {\displaystyle L_{a}(x)} f ( x ) {\displaystyle f(x)} x = a {\displaystyle x=a} 的线性化。一次方程的图形会形成直线,例如通过点 ( H , K ) {\displaystyle (H,K)} ,斜率为 M {\displaystyle M} 为直线。方程式的一般形为 y K = M ( x H ) {\displaystyle y-K=M(x-H)}

若是配合点 ( a , f ( a ) ) {\displaystyle (a,f(a))} L a ( x ) {\displaystyle L_{a}(x)} 即变成 y = f ( a ) + M ( x a ) {\displaystyle y=f(a)+M(x-a)} 。因为可微分函数是局部线性,该点的斜率可以用 f ( x ) {\displaystyle f(x)} 在点 x = a {\displaystyle x=a} 切线的斜率来代替。

函数局部线性的意思也表示函数图形上的点可以任意接近点 x = a {\displaystyle x=a} ,相对来说比较接近的点,其线性近似的效果也会比较好。斜率 M {\displaystyle M} 最准确的值会是在 x = a {\displaystyle x=a} 点的切线斜率。

旁边的图可以说明 f ( x ) {\displaystyle f(x)} 在点 x {\displaystyle x} 的切线。在 f ( x + h ) {\displaystyle f(x+h)} 位置,其中 h {\displaystyle h} 是小的正值或是负值, f ( x + h ) {\displaystyle f(x+h)} 非常接近 ( x + h , L ( x + h ) ) {\displaystyle (x+h,L(x+h))} 点的切线。

函数在点 x = a {\displaystyle x=a} 线性化的最终方程为:

y = ( f ( a ) + f ( a ) ( x a ) ) {\displaystyle y=(f(a)+f'(a)(x-a))}

针对 x = a {\displaystyle x=a} f ( a ) = f ( x ) {\displaystyle f(a)=f(x)} 。函数 f ( x ) {\displaystyle f(x)} 的导数为 f ( x ) {\displaystyle f'(x)} ,而函数 f ( x ) {\displaystyle f(x)} 在点 a {\displaystyle a} 的斜率为 f ( a ) {\displaystyle f'(a)}

若要找 4.001 {\displaystyle {\sqrt {4.001}}} ,可以用 4 = 2 {\displaystyle {\sqrt {4}}=2} 的资讯。函数 f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} 在点 x = a {\displaystyle x=a} 的线性化为 y = a + 1 2 a ( x a ) {\displaystyle y={\sqrt {a}}+{\frac {1}{2{\sqrt {a}}}}(x-a)} ,因为函数 f ( x ) = 1 2 x {\displaystyle f'(x)={\frac {1}{2{\sqrt {x}}}}} 定义了函数 f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} 在点 x {\displaystyle x} 的斜率。

代入 a = 4 {\displaystyle a=4} ,其线性化结果为 y = 2 + x 4 4 {\displaystyle y=2+{\frac {x-4}{4}}}

针对 x = 4.001 {\displaystyle x=4.001} 的例子,可得 4.001 {\displaystyle {\sqrt {4.001}}} 近似 2 + 4.001 4 4 = 2.00025 {\displaystyle 2+{\frac {4.001-4}{4}}=2.00025} 。其实际值为2.00024998,非常接近,此线性化的误差小于1%的百万分之一。

函数 f ( x , y ) {\displaystyle f(x,y)} 在点 p ( a , b ) {\displaystyle p(a,b)} 线性化的方程式为:

f ( x , y ) f ( a , b ) + f ( x , y ) x | a , b ( x a ) + f ( x , y ) y | a , b ( y b ) {\displaystyle f(x,y)\approx f(a,b)+\left.{\frac {\partial f(x,y)}{\partial x}}\right|_{a,b}(x-a)+\left.{\frac {\partial f(x,y)}{\partial y}}\right|_{a,b}(y-b)}

多变数函数 f ( x ) {\displaystyle f(\mathbf {x} )} 在点 p {\displaystyle \mathbf {p} } 线性化的通式为

f ( x ) f ( p ) + f | p ( x p ) {\displaystyle f({\mathbf {x} })\approx f({\mathbf {p} })+\left.{\nabla f}\right|_{\mathbf {p} }\cdot ({\mathbf {x} }-{\mathbf {p} })}

其中 x {\displaystyle \mathbf {x} } 是变数向量,而 p {\displaystyle \mathbf {p} } 是要线性化的点。

配合线性化的技术,可以用研究线性系统的工具来分析非线性系统在特定点附近的行为。函数在特定点附近的线性化是在该点附近泰勒级数的一阶展开。针对以下的系统

其线性化系统为

其中 x 0 {\displaystyle \mathbf {x_{0}} } 是要观测的特定点,而 D F ( x 0 ) {\displaystyle D\mathbf {F} (\mathbf {x_{0}} )} F ( x ) {\displaystyle \mathbf {F} (\mathbf {x} )} 在点 x 0 {\displaystyle \mathbf {x_{0}} } 所计算的雅可比矩阵。

在自治系统的稳定性分析中,可以用在双曲平衡点(英语:hyperbolic equilibrium point)计算雅可比矩阵的特征值来判断平衡点的特征。这就是线性化理论(英语:linearization theorem)的内容。若是时变系统,其线性化需要考量其他的因素。

在微观经济学中,决策规则(英语:decision rule)可以用状态空间下线性化的作法来近似。若以此方式分析,效用最大化的欧拉方程可以在平稳稳态附近进行线性化。所得动态方程的系统的唯一解即为其解。

在最优化中,成本函数以及非线性成分都可以线性化,以使用一些线性的求解方式(例如单纯形法)。最佳化的结果可以更有效率的产生,而且是决定性的全域极值。

在多物理场系统(系统中有多个不同物理领域的模型,彼此互相影响)中,可以针对每一个物理领域进行线性化。针对每一个物理领域的线性化可以产生线性的monolithic方程系统,可以用monolithic的迭代来求解(例如牛顿法)。这类的例子包括MRI scanner(英语:MRI scanner)系统,包括了电磁系统、力学系统及声学系统

相关

  • 独奏在音乐中,一段独奏(意大利语:solo,意为独自)是被一个单独的演奏者所演奏或唱的一个段落或一个段落的部分。一个人单独演唱或单独演奏,在其演唱演奏期间没有其他人与其搭配或协助,如
  • 柔默空缺柔默空缺(Romer's Gap)是指约3亿6千万年前泥盆纪末期至3亿4千万年前石炭纪早期一段缺乏化石纪录的时期。这段空缺以古生物学家阿尔弗雷德·罗默(Alfred Romer)来命名。在柔默空
  • 庄逢甘庄逢甘(1925年2月11日-2010年11月8日),本名霖,字逢甘,江苏常州人,中国空气动力学家、中国科学院院士,中国航天事业的奠基者之一。早年就读于上海市南洋模范中学,1942年赴重庆入读交通
  • 文达语文达语(Venda),温达语,亦称Tshivenḓa,或Luvenḓa,属于班图语支,也是南非的官方语言之一。文达语主要的使用者分布在南非,不过另有一些使用者散布在津巴布韦。在南非种族隔离时期,所
  • 桑尼·威姆斯索尼·威姆斯(英语:Sonny Weems,1986年7月8日-),出生于阿肯色州西孟菲斯,美国职业篮球运动员,司职得分后卫以及小前锋,曾效力于NBA菲尼克斯太阳队。
  • 劳里·克里斯蒂安·雷兰德劳里·克里斯蒂安·雷兰德(芬兰语:Lauri Kristian Relander,1883年5月31日-1942年2月9日)是第二任芬兰总统(1925 - 1931)。农业联盟的成员,在他当选总统前他是芬兰议会议长。雷兰德
  • 李小缘李小缘(1897年-1959年),原名李国栋,江苏南京人,中国图书馆学家,中国公共图书馆事业的开拓者。1925年毕业于哥伦比亚大学教育社会学专业,获硕士学位。回国后,入金陵大学图书馆工作,先后
  • 泛非议会泛非议会常任委员会(英语:Permanent Committees of the Pan-African Parliament)泛非议会(英语:Pan-African Parliament)是非洲联盟的立法机关,成立于2004年3月18日,设于南非米德兰
  • 陈舜瑶陈舜瑶(1917年9月-2019年7月31日),中华人民共和国政治人物,清华大学原党委副书记。宋平妻子。1917年9月出生在山东济南,祖籍福建福州。1936年考入清华大学,1937年七七事变后随母校
  • 中国历代文人并称中国历代文人好品题,树立门户,明朝品题尤多,为历朝之冠。明朝文士好名,吴伟业与钱谦益常有意气之争,吴伟业称:“吾郡自西铭先生以教化兴起,云间夏彝仲、陈卧子从而和之,两郡之文遂称