可微函数

✍ dations ◷ 2025-11-16 06:35:56 #微分学

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

一般来说,若0是函数定义域上的一点,且′(0)有定义,则称在0点可微。这就是说的图像在(0, (0))点有非垂直切线,且该点不是间断点、尖点。

若在0点可微,则在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。

实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。

函数是连续可微(continuously differentiable),如果导数存在且是连续函数。可微函数之导数不可能有跳跃不连续点,但可能有本性不连续点。例如考虑以下函数:

此函数在=0处可微,可照定义求出f'(0):

但对≠0,

当趋近于0时,的极限并不存在。

连续可微函数被称作 C 1 {\displaystyle C^{1}} 阶导数′(), ″(), ..., ()() 都存在且连续。如果对于所有正整数n,f(n)存在,这个函数被称为光滑函数或称 C {\displaystyle C^{\infty }} 1。(这是可微的一个充分不必要条件)

形式上,一个多元实值函数 f: R → R在点x0处可微,如果存在线性映射J: R → R满足

注意,偏导数(甚至所有方向导数)都存在并不能保证函数在该点可微,考虑以下函数: R2 → R:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。以下是一个连续的例子:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。

在复分析中,任何在某点附近可微的复变函数被称为全纯函数,这类函数也将会是无限可微,甚至是解析函数。

相关

  • 阿基米德浮体原理阿基米德浮体原理(或直接称为阿基米德原理或浮力原理)是阿基米德发现的原理。该原理是说,浸在流体中的物体(全部或部分)受到竖直向上的浮力,其大小等于物体所排开流体的重力。其公
  • 中南大学湘雅医学院中南大学湘雅医学院是现代医学在中国传播史上具有重要意义的教会创办学校,位于湖南省长沙市,由湖南育群学会与美国雅礼协会联合创建,创始人为胡美博士(Edward Hicks Hume)和颜福
  • 卢加诺湖卢加诺湖(意大利语:Lago di Lugano)是位于瑞士东南部,地处瑞士和意大利两国交界处的一个湖泊。湖名来源于瑞士城市卢加诺。位于马焦雷湖和科莫湖之间。卢加诺湖是一个知名的观光
  • 金融业金融(英语:Finance)是“资金的融通”的缩略语。金,指的是黄金;融,最早指融化变成液体,也有融通的意思。所以,金融就是将黄金融化分开交易流通,即价洽通达,是指在经济生活中,银行、证券
  • 田纳西大学田纳西大学诺克斯维尔分校 (University of Tennessee, Knoxville)亦指田纳西大学(The University of Tennessee) ,是位于美国田纳西州诺克斯维尔的一所公立大学。田纳西大学为田
  • 工业生物技术生物技术(英语:biotechnology),又称为生物科技,指利用生物体(含动物,植物及微生物的细胞)来生产有用的物质或改进制程,改良生物的特性,以降低成本及创新物种的科学技术。根据不同的工
  • 真理党真理党可以指:
  • 日本猕猴日本猕猴(学名:Macaca fuscata),也叫雪猴,是生活在日本北部的一种猕猴。它们是世界上生活地区最北(最北达到本州青森县北部下北半岛)的非人类灵长目动物。日本猕猴的毛色为灰褐色,脸
  • DCT离散余弦变换(英语:discrete cosine transform, DCT)是与傅里叶变换相关的一种变换,类似于离散傅里叶变换,但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶
  • 美国联邦地区法院 美国众议院议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the