可微函数

✍ dations ◷ 2025-10-18 16:14:17 #微分学

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

一般来说,若0是函数定义域上的一点,且′(0)有定义,则称在0点可微。这就是说的图像在(0, (0))点有非垂直切线,且该点不是间断点、尖点。

若在0点可微,则在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。

实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。

函数是连续可微(continuously differentiable),如果导数存在且是连续函数。可微函数之导数不可能有跳跃不连续点,但可能有本性不连续点。例如考虑以下函数:

此函数在=0处可微,可照定义求出f'(0):

但对≠0,

当趋近于0时,的极限并不存在。

连续可微函数被称作 C 1 {\displaystyle C^{1}} 阶导数′(), ″(), ..., ()() 都存在且连续。如果对于所有正整数n,f(n)存在,这个函数被称为光滑函数或称 C {\displaystyle C^{\infty }} 1。(这是可微的一个充分不必要条件)

形式上,一个多元实值函数 f: R → R在点x0处可微,如果存在线性映射J: R → R满足

注意,偏导数(甚至所有方向导数)都存在并不能保证函数在该点可微,考虑以下函数: R2 → R:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。以下是一个连续的例子:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。

在复分析中,任何在某点附近可微的复变函数被称为全纯函数,这类函数也将会是无限可微,甚至是解析函数。

相关

  • Dracunculus medinensisGordius medinensis Linnaeus, 1758麦地那龙线虫(学名:Dracunculus medinensis),又称几内亚龙线虫,是一种可寄生于人体内的寄生虫,属于线虫的龙线虫属(英语:Dracunculus_(nematode)),
  • 阿迪杰河阿迪杰河(意大利语:Adige;德语:Etsch)位于意大利东北部,发源于意大利、奥地利和瑞士边境处阿尔卑斯山脉的里西亚隘口(Resia),先向东,后折向南流,经过特伦托、维罗纳等城市,最终注入亚
  • 巴里巴里(意大利语:Bari)是意大利南部第二大城市,面积116平方公里,人口326,201人(2001年)。巴里是普利亚大区首府,位处亚得里亚海,也是巴里省的首府。1990年代,巴里的人口发展和国家总趋势
  • 花样结构模体(英语:structural motif,亦称为结构基序)是链状生物分子(如蛋白质或核酸)中的一种超二级结构,也存在于其它分子之中。结构模体使得我们无法预测蛋白的生物学功能:不同蛋白质
  • 环己醇环己醇是一种仲醇,由一个羟基取代环己烷的其中一个氢而成,它也是苯酚与氢加成的产物。可发生消去反应生成环己烯,可被铬酸氧化为环己酮。
  • 尿痛排尿疼痛、尿痛(英语:dysuria)是指在排尿过程中出现的疼痛现象,是与膀胱有关的症状(有时也作“下泌尿道症状”)。患者通常会形容排尿疼痛为“刺痛、灼烧、瘙痒”的感觉。该症状通
  • 新西兰国际广播电台新西兰国际广播电台(英语:Radio New Zealand International,英语简称RNZI)是新西兰的官方广播电台,也是新西兰国家广播电台的对外广播部门,广播内容有新闻和体育节目,语言以英语为
  • 荷属圣马丁首相荷属圣马丁首相是荷兰王国海外自治国荷属圣马丁的政府首脑,荷属安的列斯于2010年10月10日解体,所属荷属圣马丁和库拉索成为新的自治国。阿根廷总统 · 安提瓜和巴布达总理 ·
  • 智利毛皮海狮(A. philippii)智利毛皮海狮(学名:Arctocephalus philippii)主要分布于智利胡安·费尔南德斯群岛,是鳍足亚目中体型第二小的物种,16世纪发现。
  • 分子对称性分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和