可微函数

✍ dations ◷ 2025-06-29 08:21:38 #微分学

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

一般来说,若0是函数定义域上的一点,且′(0)有定义,则称在0点可微。这就是说的图像在(0, (0))点有非垂直切线,且该点不是间断点、尖点。

若在0点可微,则在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。

实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。

函数是连续可微(continuously differentiable),如果导数存在且是连续函数。可微函数之导数不可能有跳跃不连续点,但可能有本性不连续点。例如考虑以下函数:

此函数在=0处可微,可照定义求出f'(0):

但对≠0,

当趋近于0时,的极限并不存在。

连续可微函数被称作 C 1 {\displaystyle C^{1}} 阶导数′(), ″(), ..., ()() 都存在且连续。如果对于所有正整数n,f(n)存在,这个函数被称为光滑函数或称 C {\displaystyle C^{\infty }} 1。(这是可微的一个充分不必要条件)

形式上,一个多元实值函数 f: R → R在点x0处可微,如果存在线性映射J: R → R满足

注意,偏导数(甚至所有方向导数)都存在并不能保证函数在该点可微,考虑以下函数: R2 → R:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。以下是一个连续的例子:

此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。

在复分析中,任何在某点附近可微的复变函数被称为全纯函数,这类函数也将会是无限可微,甚至是解析函数。

相关

  • 资料分析数据分析是一种统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一
  • 核孔蛋白结构 / ECOD核孔蛋白(英语:nucleoporins)是一类蛋白质家族,作为构成核孔复合物的砖块。核孔复合物是长度纵穿整个核被膜的巨大结构物,形成了细胞核与细胞质之间调控高分子流动的
  • 华丽细尾鹩莺壮丽细尾鹩莺(学名:Malurus cyaneus),又名华丽细尾鹩莺,是细尾鹩莺科的一种雀,分布在澳洲东南部。它们是留鸟及地盘性的,且有高度的两性异形:雄雀繁殖时前额、耳底、上背及尾巴呈鲜
  • 和平期间罕见军事强国有实力编制普通国家有实力编制班(英语:Squad)是现代陆军、海军陆战队等军种的编制,由若干个伍或士兵组成,一般是8到15人。班是现代陆军编制中的最基本作战单
  • 捕鱼儿海之战明太祖第六次北伐又称捕鱼儿海之战,洪武二十年(1387年)九月三十日,朱元璋诏命永昌侯蓝玉为征虏大将军,延安侯唐胜宗、武定侯郭英为左右副将军,都督佥事耿忠、孙恪为左右参将,率军15
  • 旗尾线旗尾线是台湾旗山糖厂的营业线,自1910年8月20日开始营运到1978年为止,铁轨则于1982年拆除。旗尾线所隶属的旗山糖厂,原本是1909年5月17日成立的高砂制糖会社于蕃薯藔厅旗尾庄兴
  • 太空实验室1号太空实验室是指重复使用的航天实验室,设置在航天飞机内部。太空实验室从1983年开始设置于航天飞机内部,1998年4月最后一次升空 ,总共发射22次。航天飞机任务列表 (已取消的航天
  • 桑孔语桑孔语是桑孔人的本民族语言,语言归属汉藏语系藏缅语族缅彝语群彝语支。使用人数根据1995年的数据约低于1500人,且多为中老年人,它是中国境内的一种濒危语言,也是直至1990年代才
  • 李荣李荣(1920年2月4日-2002年12月31日),曾用名李昌厚,笔名董少文、宋元嘉等,浙江温岭人,语言学家。曾先后担任中国社会科学院语言研究所方言研究组(室)负责人、语言研究所副所长、所长、
  • 美国宪法第13修正案宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙