首页 >
弧长
✍ dations ◷ 2025-04-26 12:18:56 #弧长
曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。计算平面上一段曲线的弧长,最早也是最直接的方法是用一些直线段来作出和曲线相似的形状,以直线段的长度代替曲线的弧长。具体的方法是在曲线上选一些点,然后将这些点用线段连起来,得到一条折线。这些线段长度的和,也就是折线的长度,便近似于曲线的弧长。选取的点越密集越均匀,折线的长度就越接近曲线的弧长。但有时候折线的长度可能可以任意大,甚至趋向无限大。这样的曲线无法定义长度。但对一般的光滑曲线来说,当相邻的点之间的距离都趋于0的时候,折线的长度会趋于一个极限,也就是曲线的弧长。设
C
{displaystyle C}
是欧几里德空间
S
=
R
n
{displaystyle S=mathbb {R} ^{n}}
(或某个有限维度量空间)中的一条曲线。它是某个从实数区间映射到.mw-parser-output .serif{font-family:Times,serif}S的连续函数
f
:
[
a
,
b
]
→
S
{displaystyle f:rightarrow S}
的图像。考虑区间
[
a
,
b
]
{displaystyle }
的一个分割:
a
=
t
0
<
t
1
<
…
<
t
n
−
1
<
t
n
=
b
{displaystyle a=t_{0}<t_{1}<ldots <t_{n-1}<t_{n}=b}
。
f
(
t
0
)
,
f
(
t
1
)
,
…
,
f
(
t
n
−
1
)
,
f
(
t
n
)
{displaystyle f(t_{0}),f(t_{1}),ldots ,f(t_{n-1}),f(t_{n})}
是曲线
C
{displaystyle C}
上的
n
+
1
{displaystyle n+1}
个点。将
f
(
t
i
)
{displaystyle f(t_{i})}
和
f
(
t
i
+
1
)
{displaystyle f(t_{i+1})}
两点之间的距离记为
d
(
f
(
t
i
)
,
f
(
t
i
+
1
)
)
{displaystyle dleft(f(t_{i}),f(t_{i+1})right)}
,这也是从
f
(
t
i
)
{displaystyle f(t_{i})}
连到
f
(
t
i
+
1
)
{displaystyle f(t_{i+1})}
的线段的长度。而曲线
C
{displaystyle C}
的弧长
L
(
C
)
{displaystyle L(C)}
定义为:也就是说,曲线的弧长是所有从曲线中选取有限个点连起来的折线长度的最小上界。广义的曲线弧长也包括这个最小上界不存在的情况,这时候定义曲线的弧长是无穷大。曲线的弧长有限的时候,称之为可求长曲线,否之称为不可求长曲线。以上的定义不要求函数
f
{displaystyle f}
可微,度量空间也没有定义微分的结构。将曲线用函数的形式表达称为曲线的参数化,用参数(函数的自变量)来刻画曲线。对给定的曲线,参数化的方法不止一种。但只要参数化的函数是连续的,那么两种不同的参数化方式之间就可以用一个连续单调的函数来转换。所以参数化的方式不会影响定义曲线的弧长。曲线的弧长是它的内禀属性,不依赖于参数化的方式。假设曲线
C
{displaystyle C}
可以用连续可微函数
r
:
[
a
,
b
]
→
S
{displaystyle r;:;rightarrow ;S}
进行参数化,那么在进行分割
a
=
t
0
<
t
1
<
…
<
t
n
−
1
<
t
n
=
b
{displaystyle a=t_{0}<t_{1}<ldots <t_{n-1}<t_{n}=b}
后,每一段线段
Δ
r
i
=
(
r
(
t
i
)
,
r
(
t
i
+
1
)
)
{displaystyle Delta r_{i}=left(r(t_{i}),r(t_{i+1})right)}
在间隔足够小的时候可以近似为
Δ
r
i
≈
r
′
(
t
i
)
Δ
t
i
{displaystyle Delta r_{i}approx r'(t_{i})Delta t_{i}}
。所以折线长度就是:当所有的
Δ
t
i
{displaystyle Delta t_{i}}
都趋于0时,就能得到曲线的长度s:假设平面曲线
C
{displaystyle C}
是用函数
X
(
t
)
{displaystyle X(t)}
和
Y
(
t
)
{displaystyle Y(t)}
进行参数化。考虑曲线上很短的一段弧,它的长度为
d
s
{displaystyle ds}
,根据勾股定理,在给定的直角坐标系中,有:那么
d
s
{displaystyle ds}
和两者的关系是:d
s
{displaystyle ds}
足够接近0的时候,
d
x
{displaystyle dx}
和
d
y
{displaystyle dy}
也足够接近0. 所以在给定的时刻
t
{displaystyle t}
,在
(
X
(
t
)
,
Y
(
t
)
)
{displaystyle left(X(t),Y(t)right)}
附近有:对上式两端分别积分,就得到:三维空间中,假设曲线
C
{displaystyle C}
是用函数
X
(
t
)
{displaystyle X(t)}
、
Y
(
t
)
{displaystyle Y(t)}
和
Z
(
t
)
{displaystyle Z(t)}
进行参数化,则用类似的方式可以推出,假设平面曲线
C
{displaystyle C}
是函数
f
:
R
→
R
{displaystyle f:mathbb {R} rightarrow mathbb {R} }
的图像,并且函数
f
{displaystyle f}
是连续可微的函数:
f
′
(
t
)
{displaystyle f'(t)}
存在并且也是连续的函数。那么这等价于设
X
(
t
)
=
t
{displaystyle X(t)=t}
,
Y
(
t
)
=
f
(
t
)
{displaystyle Y(t)=f(t)}
,所以假设曲线是以极坐标的方式进行参数化:
r
:
R
→
R
+
{displaystyle r:mathbb {R} rightarrow mathbb {R} ^{+}}
,那么
d
s
2
=
d
r
2
+
(
r
d
θ
)
2
.
{displaystyle ds^{2}=dr^{2}+(rdtheta )^{2}.}
弧长等于:通过积分学的知识可以知道,对大部分的
f
{displaystyle f}
或
X
(
t
)
{displaystyle X(t)}
和
Y
(
t
)
{displaystyle Y(t)}
,上述的积分式没有初等的解析表达式,所以大部分的曲线弧长是无法用显式计算的,只能通过数值计算求出。能用显式表达弧长的曲线除了直线和圆以外还有悬链线、摆线、等角螺线、抛物线、半立方抛物线等等。椭圆的弧长无法用显式计算,数学家们因此发展出椭圆积分和椭圆函数。圆的弧长与角度(弧度)成正比。设圆的半径为r,那么弧度
α
{displaystyle alpha }
对应的圆弧的弧长是
r
α
{displaystyle ralpha }
;角度θ对应的圆弧的弧长是
r
π
θ
180
{displaystyle {frac {rpi theta }{180}}}
。整个圆周的周长是:
C
=
2
π
r
{displaystyle C=2pi r}
.特别的,当圆心角使用弧度制单位时,弧长=弧度制圆心角×半径。设半立方抛物线的方程为:
y
2
=
3
(
x
−
1
)
3
{displaystyle y^{2}=3(x-1)^{3}}
,要求点
(
1
,
0
)
{displaystyle (1,0)}
到
(
4
,
9
)
{displaystyle (4,9)}
的曲线段的弧长,可以用积分计算。这一段上的
y
{displaystyle y}
大于等于0,即
y
=
3
(
x
−
1
)
3
2
{displaystyle y={sqrt {3}}(x-1)^{frac {3}{2}}}
,而求导可得:所以弧长:有些曲线本身有界(可以被长和宽都有限的长方形覆盖),但其弧长是无限大。一个著名的例子是科赫雪花曲线(见右图)。这个曲线是由一个线段通过重复一系列步骤的改变直到无限而构成的。可以计算,每一步改变后,曲线的弧长都会变成上一步时的三分之四,所以假设原线段长度为a,则第n步之后,弧长变成:a(4/3)n,当n趋于正无穷大时,曲线弧长也趋于无限大。
相关
- 阿提卡阿提卡希腊语(英语:Attic Greek),又称雅典希腊语,是一种古希腊语方言,在以雅典为中心的阿提卡地区使用。在诸古希腊语方言中,它最类似于后来的希腊语,并且是“古希腊语”课程所研习
- 阿提拉阿提拉(拉丁语:Attila,406年9月2日-453年4月30日),一译亚提拉,古代欧亚大陆匈人最为人熟知的领袖和单于,史学家称之为“上帝之鞭”(scourge of God),曾多次率领大军入侵东罗马帝国及西
- 见见部,为汉字索引中的部首之一,康熙字典214个部首中的第一百四十七个(七划的则为第一个)。正体为七划部首,简体则归四划。见部大都以右、下方为部字。且无其他部首可用者将部首归
- 海牛海牛目(学名:Sirenia)在海洋哺乳动物中是相当特殊的一群,所属物种均为植食性,以海草与其他水生植物为食。现存共有四种海牛目动物,分为两个科:海牛科(Trichechidae)及儒艮科(Dugongida
- 法兰西第四共和国法兰西第四共和国为1946年到1958年的法国共和政府。这段时期,法国实施议会制,该宪制与第二次世界大战前的第三共和相似,但也遭遇到相似的问题,比如内阁短暂及频繁更换,政策计划面
- 方守贤方守贤(1932年10月28日-2020年1月19日),安徽太平人,生于上海,中国加速器物理学家,中国科学院高能物理研究所研究员、前所长,北京正负电子对撞机国家实验室主任,中国科学院数学物理学
- 非蛋白氨基酸非蛋白氨基酸是生物化学上指在蛋白质内找不到(例如:肉碱、GABA和L-DOPA),或没有被标准遗传密码编码的其他氨基酸。尽管在合成蛋白质时只会用到23种氨基酸(真核细胞只会用21种),事实
- 生态现代化生态现代化是一门环境改革的社会科学,过去几十年得到越来越多的学者和政府关注。生态现代化出现在20世纪80年代初,由一群学者在柏林的自由大学和社会科学研究中心发表,其中学者
- 杜赫德杜赫德(Jean-Baptiste Du Halde,1674年-1743年)是法国神父,著名汉学家,“杜赫德”是他的汉语名字。虽然他终身未曾到过中国,但却出版了非常详实的介绍中国历史、文化、风土人情的著
- 惊天大阴谋《总统班底》(英语:All the President's Men)是一部1976年的美国政治惊悚片(英语:Political thriller),由艾伦·帕库拉执导,达斯汀·霍夫曼及罗伯特·雷德福等主演。故事改编自鲍勃