插值

✍ dations ◷ 2025-06-29 17:26:07 #插值

在数学的数值分析领域中,内插,或称插值(英语:Interpolation),是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。求解科学和工程的问题时,通常有许多数据点借由采样、实验等方法获得,这些数据可能代表了有限个数值函数,其中自变量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。

与插值密切相关的另一个问题是通过简单函数逼近复杂函数。假设给定函数的公式是已知的,但是太复杂以至于不能有效地进行评估。来自原始函数的一些已知数据点,或许会使用较简单的函数来产生插值。当然,若使用一个简单的函数来估计原始数据点时,通常会出现插值误差;然而,取决于该问题领域和所使用的插值方法,以简单函数推得的插值数据,可能会比所导致的精度损失更大。

内插是曲线必须通过已知点的拟合。参见拟合条目。

例如,已知数据:

求:

给定 n {displaystyle n} (2.5) 的例子。由于 2.5 在 2 和 3 之间,所以在 (2) = 0.9093 和 (3) = 0.1411 之间,取中间的 (2.5) 是合理的,得到 0.5252。一般来说,线性插值采用两个数据点,例如 (,) 和 (,),

则线性插值的公式为




上面公式中的方程式表明, ( x a , y a ) {displaystyle (x_{a},y_{a})} 不是可微分的。

以下误差估计显示线性插值不是很精确。用 表示我们要插入的函数,假设 位于 ,而 是连续可微的。那么线性插值的误差是

换言之,误差与数据点之间的距离的平方成正比。包括多项式插值和样条插值(见下一小节)在内的其他一些方法中的误差与数据点之间距离的较高幂成正比。这些方法也产生更平滑的插值。

多项式插值是线性插值的推广。线性插值是一个线性函数。我们现在用一个更高阶的多项式代替这个插值。再考虑一下上面给出的问题。以下的六次多项式经历了所有七个点:

代入 = 2.5,我们发现 (2.5) = 0.5965。一般情况下,如果我们有 n 个数据点,那么在所有的数据点中只有一个最多 n-1 次多项式。插值误差与数据点与幂次 n 之间的距离成正比。此外,插值是一个多项式,因此是无限可微的。所以我们看到多项式插值克服了线性插值的大部分问题。但是,多项式插值也有一些缺点。与线性内插相比,计算内插多项式的成本是昂贵的(参见计算复杂度)。此外,多项式插值可能会出现振荡伪像,特别是在端点(见龙格现象)。

与线性插值不同,多项式插值可以估计样本范围之外的局部最大值和最小值。例如,上面的插值在 ≈ 1.566 处有一个局部最大值,() ≈ 1.003,在 ≈ 4.708 处有一个局部最小值,() ≈ −1.003。然而,这些最大值和最小值可能会超出函数的理论范围 - 例如,一个总是正的函数可能有一个负值的插值,因此它的逆值包含假垂直渐近线。

更一般地说,所得曲线的形状,特别是对于独立变量的非常高或低的值,可能与常识相反,即与已经产生数据点的实验系统已知的情况相反。通过使用样条插值或限制对切比雪夫多项式的注意可以减少这些缺点。

线性插值对每个区间 使用线性函数。 样条插值在每个间隔中使用低阶多项式,并选择多项式以使它们平滑地吻合在一起。 结果函数被称为样条曲线。例如,三次样条是分片段立方,两次连续可微。 此外,它的二阶导数在终点为零。 在上表中插入点的三次样条函数由下式给出

在这种情况下,我们得到 (2.5) = 0.5972。与多项式插值的方法相比较,样条跟多项式一样,其插值误差会小于线性插值,而且插值更平滑;使用样条会比使用高阶多项式更容易评估。 它也不会受到龙格现象的影响。

其他形式的插值可以通过选择不同的插值类来构造。 例如,有理插值是使用Padé逼近的有理函数插值,而三角插值是使用傅里叶级数的三角多项式插值。 另一种可能是使用小波。如果数据点的数量是无限的,则可以使用Whittaker-Shannon插值公式。有时候,我们不仅知道我们想插入的函数的值,而且也知道它的导数。 这导致Hermite插值问题。当每个数据点本身就是一个函数时,将插值问题看作是每个数据点之间的局部对流问题是有用的。 这个想法导致了运输理论中使用的位移插值问题。

术语外推用于找到已知数据点范围之外的数据点。在曲线拟合问题中,插值必须准确穿过数据点的约束被放宽。 只需要尽可能接近数据点(在一些其他限制内)。 这需要参数化潜在的插值并且有一些测量误差的方法。 在最简单的情况下,这导致最小二乘法逼近。近似理论研究如何从某个预定的类别的另一个函数找到给定函数的最佳逼近,以及这个近似值有多好。 这明显产生了内插函数可以近似未知函数的界限。

本章内容参考了《数学手册》。

相关

  • 永兴岛永兴岛(英语:Yongxing Island / Woody Island)是西沙群岛之宣德群岛的岛屿,是西沙群岛面积最大的岛屿,同时也是中华人民共和国海南省三沙市人民政府驻地。越南政府声称对该岛拥有
  • 国民保健服务国民医疗服务体系(英语:National Health Service,简称NHS),是对英国以下四大公型医疗系统的统称:国民医疗服务体系的经费主要来自全国中央税收,用以向公众提供一系列的医疗保健服务
  • 亨利·赫兹利特亨利·赫兹利特(英语:Henry Hazlitt,1894年11月28日-1993年7月8日)是自由意志主义哲学家、经济学家,也曾担任华尔街日报、纽约时报等报刊的记者。生于一个贫穷的家庭,他的父亲在他
  • 阿部正瞭阿部正瞭(あべ まさあきら,1813年-1838年),日本江户时代大名。陆奥国白河藩第3代藩主。忠秋系阿部家11代。文化10年(1813年)8月20日出生,三河吉田藩主·松平信明九男。天保2年(1831年
  • 玛格丽特 (瓦卢瓦)瓦卢瓦的玛格丽特 (法语:;1553年5月14日-1615年3月27日)又被称为玛戈王后(la Reine Margot),生于圣日耳曼昂莱的皇家城堡;死于巴黎。她是法国和纳瓦拉的王后,同时也是瓦卢瓦女公爵。
  • 井上雄贵井上雄贵(1995年1月23日-)是日本的男性声优。出身于神奈川县。血型AB型。Mausu Promotion所属。2013年在就读东京广播学院广播声优科时,参加“ZEN THE HOLLYWOOD”的甄选并合格
  • 坎耶纳加尔坎耶纳加尔(Kanyanagar),是印度西孟加拉邦South Twentyfour Parganas县的一个城镇。总人口10193(2001年)。该地2001年总人口10193人,其中男性5215人,女性4978人;0—6岁人口902人,其中
  • 群交色情电影群交色情电影特指进行群交的色情片。色情演员郭盈恩在群交色情电影世界第一群交会中打破了世界纪录。该电影在商业上得到成功,赢得了那一年的成人影带新闻奖最佳销量色情电影
  • 周运周运(1980年10月28日-),中国大陆新闻从业员,曾供职于重庆广播电视总台(集团),现时供职于中央广播电视总台财经节目中心。1980年,周运出生于重庆市市中区,自幼在解放碑长大。中学时期,其就读于重庆市第二十九中学。1999年,其考入北京广播学院国际新闻专业。2003年,周运加入重庆电视台,并于同年5月12日首次主持该台的英语新闻节目。2005年,其前往英国谢菲尔德大学攻读硕士学位,回国后在中国中央电视台英语频道担任实习记者;2009年,其再前往美国新泽西州州立威廉·帕特森大学攻读MBA学位,期间兼任
  • 延龄 (道光二十七年进士)延龄(1812年-?年),字覃生,号寿峰,康杰达氏,内务府正白旗满洲毓恒管领下人,由廪生中式道光十九年己亥科举人,道光二十七年(1847年)丁未科进士。