首页 >
双曲正割
✍ dations ◷ 2025-11-06 07:07:18 #双曲正割
在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数
sinh
{displaystyle sinh }
和双曲余弦函数
cosh
{displaystyle cosh }
,从它们可以导出双曲正切函数
tanh
{displaystyle tanh }
等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。函数
cosh
x
{displaystyle cosh x!}
是关于y轴对称的偶函数。函数
sinh
x
{displaystyle sinh x!}
是奇函数。如同当
t
{displaystyle t}
遍历实数集
R
{displaystyle mathbb {R} }
时,点(
cos
t
{displaystyle cos t!}
,
sin
t
{displaystyle sin t!}
)的轨迹是一个圆
x
2
+
y
2
=
1
{displaystyle x^{2}+y^{2}=1}
一样,当
t
{displaystyle t}
遍历实数集
R
{displaystyle mathbb {R} }
时,点(
cosh
t
{displaystyle cosh t!}
,
sinh
t
{displaystyle sinh t!}
)的轨迹是单位双曲线(英语:Unit hyperbola)
x
2
−
y
2
=
1
{displaystyle x^{2}-y^{2}=1}
的右半边。这是因为有以下的恒等式:参数t不是圆角而是双曲角,它表示在x轴和连接原点和双曲线上的点(
cosh
t
{displaystyle cosh t!}
,
sinh
t
{displaystyle sinh t!}
)的直线之间的面积的两倍。在18世纪,约翰·海因里希·兰伯特引入双曲函数,并计算了双曲几何中双曲三角形的面积。自然对数函数是在直角双曲线
x
y
=
1
{displaystyle xy=1}
下定义的,可构造双曲线直角三角形,底边在线
y
=
x
{displaystyle y=x}
上,一个顶点是原点,另一个顶点在双曲线。这里以自然对数即双曲角作为参数的函数,是自然对数的逆函数指数函数,即要形成指定双曲角u,在渐近线即x或y轴上需要有的x或y的值。显见这里的底边是
(
e
u
+
e
−
u
)
2
2
{displaystyle left(e^{u}+e^{-u}right){frac {sqrt {2}}{2}}}
,垂线是
(
e
u
−
e
−
u
)
2
2
{displaystyle left(e^{u}-e^{-u}right){frac {sqrt {2}}{2}}}
。通过旋转和缩小线性变换,得到单位双曲线下的情况,有:单位双曲线中双曲线扇形的面积是对应直角双曲线
x
y
=
1
{displaystyle xy=1}
下双曲角的 1/2。双曲角经常定义得如同虚数圆角。实际上,如果x是实数而i2 = −1,则所以双曲函数cosh和sinh可以通过圆函数来定义。这些恒等式不是从圆或旋转得来的,它们应当以无穷级数的方式来理解。特别是,可以将指数函数表达为由偶次项和奇次项组成,前者形成cosh函数,后者形成了sinh函数。cos函数的无穷级数可从cosh得出,通过把它变为交错级数,而sin函数可来自将sinh变为交错级数。上面的恒等式使用虚数i,从三角函数的级数的项中去掉交错因子(−1)n,来恢复为指数函数的那两部分级数。双曲函数可以通过虚数圆角定义为:这些复数形式的定义得出自欧拉公式。奥古斯都·德·摩根在其1849年出版的教科书《Trigonometry and Double Algebra》中将圆三角学扩展到了双曲线。威廉·金顿·克利福德在1878年使用双曲角来参数化单位双曲线。给定相同的角α,在双曲线上计算双曲角的量值(双曲扇形面积除以半径)得到双曲函数,角α得到三角函数。在单位圆和单位双曲线上,双曲函数与三角函数有如下的关系:与双曲函数有关的恒等式如下:由于双曲函数和三角函数之间的对应关系,双曲函数的恒等式和三角函数的恒等式之间也是一一对应的。对于一个已知的三角函数公式,只需要将其中的三角函数转成相应的双曲函数,并将含有有两个sinh的积的项(包括
coth
2
x
,
tanh
2
x
,
csch
2
x
,
sinh
x
sinh
y
{displaystyle coth ^{2}x,tanh ^{2}x,operatorname {csch} ^{2}x,sinh xsinh y}
)转换正负号,就可得到相应的双曲函数恒等式。如双曲函数也可以以泰勒级数展开:其中从双曲正弦和余弦的定义,可以得出如下恒等式:和因为指数函数可以定义为任何复数参数,也可以扩展双曲函数的定义为复数参数。函数sinh z和cosh z是全纯函数。指数函数与三角函数的关系由欧拉公式给出:所以:因此,双曲函数是关于虚部有周期的,周期为
2
π
i
{displaystyle 2pi i}
(对双曲正切和余切是
π
i
{displaystyle pi i}
).反双曲函数是双曲函数的反函数。它们的定义为:正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 凝血酶1a2c, 1a3b, 1a3e, 1a46, 1a4w, 1a5g, 1a61, 1abi, 1abj, 1ad8, 1ae8, 1afe, 1aht, 1ai8, 1aix, 1awf, 1awh, 1ay6, 1b5g, 1b7x, 1ba8, 1bb0, 1bbr, 1bcu, 1bhx, 1bmm, 1bmn
- 非酒精性脂肪肝脂肪肝(英语:fatty liver disease,简写FLD),又叫肝积脂病或肝性肥胖症,是可逆转的病情。大甘油三酸酯脂肪液泡通过脂肪变性(steatosis)积累在肝细胞(Hepatocyte)。这是用鹅制作鹅肝(法
- Fe(ClOsub4/sub)sub2/sub高氯酸亚铁是一种无机化合物,化学式为Fe(ClO4)2。其六水合物易溶于水,溶解度为98 g(0°C)。高氯酸亚铁易潮解且易氧化,需密封保存。
- 杜尔贝科罗纳托·杜尔贝科(意大利语:Renato Dulbecco,1914年2月22日-2012年2月19日),意大利出生的病毒学家,二次世界大战后与好友神经生物学家丽塔·列维-蒙塔尔奇尼一起移居美国。由于发现
- 风切变风切变(wind shear),又称风剪,是指大气中不同两点之间的风速或风向的剧烈变化。根据两点高度之间的差异,风切变可分为水平和垂直两大类。是指垂直于地表方向上风速或风向随高度的
- 周秀骥周秀骥(1932年9月24日-),中国大气物理学家。出生于江苏丹阳。1962年苏联科学院应用地球物理研究所研究生毕业,获数理副博士学位。1991年当选为中国科学院学部委员(院士)。 中国气
- C07A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码C07(β受体阻断药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collab
- NaBrO次溴酸钠是一种无机化合物,化学式NaBrO,或写作NaOBr,为钠的次溴酸盐。它通常以五水合物(NaBrO·5H2O)的形式存在。 它是一种黄橙色固体,可溶于水。它是次氯酸钠的溴类似物,为普通漂
- 夫朗和斐谱线夫琅和费线(Fraunhofer lines),港台作夫朗和斐谱线,是一系列以德国物理学家约瑟夫·夫琅和费(1787年─1826年)为名的光谱线,这些是最初被当成太阳光谱中的暗特征谱线。英国的化学
- 威灵顿公爵威灵顿公爵(Duke of Wellington)是联合王国贵族头衔,于1814年封与阿瑟·韦尔斯利将军。
