首页 >
双曲正割
✍ dations ◷ 2025-04-04 14:32:56 #双曲正割
在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数
sinh
{displaystyle sinh }
和双曲余弦函数
cosh
{displaystyle cosh }
,从它们可以导出双曲正切函数
tanh
{displaystyle tanh }
等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。函数
cosh
x
{displaystyle cosh x!}
是关于y轴对称的偶函数。函数
sinh
x
{displaystyle sinh x!}
是奇函数。如同当
t
{displaystyle t}
遍历实数集
R
{displaystyle mathbb {R} }
时,点(
cos
t
{displaystyle cos t!}
,
sin
t
{displaystyle sin t!}
)的轨迹是一个圆
x
2
+
y
2
=
1
{displaystyle x^{2}+y^{2}=1}
一样,当
t
{displaystyle t}
遍历实数集
R
{displaystyle mathbb {R} }
时,点(
cosh
t
{displaystyle cosh t!}
,
sinh
t
{displaystyle sinh t!}
)的轨迹是单位双曲线(英语:Unit hyperbola)
x
2
−
y
2
=
1
{displaystyle x^{2}-y^{2}=1}
的右半边。这是因为有以下的恒等式:参数t不是圆角而是双曲角,它表示在x轴和连接原点和双曲线上的点(
cosh
t
{displaystyle cosh t!}
,
sinh
t
{displaystyle sinh t!}
)的直线之间的面积的两倍。在18世纪,约翰·海因里希·兰伯特引入双曲函数,并计算了双曲几何中双曲三角形的面积。自然对数函数是在直角双曲线
x
y
=
1
{displaystyle xy=1}
下定义的,可构造双曲线直角三角形,底边在线
y
=
x
{displaystyle y=x}
上,一个顶点是原点,另一个顶点在双曲线。这里以自然对数即双曲角作为参数的函数,是自然对数的逆函数指数函数,即要形成指定双曲角u,在渐近线即x或y轴上需要有的x或y的值。显见这里的底边是
(
e
u
+
e
−
u
)
2
2
{displaystyle left(e^{u}+e^{-u}right){frac {sqrt {2}}{2}}}
,垂线是
(
e
u
−
e
−
u
)
2
2
{displaystyle left(e^{u}-e^{-u}right){frac {sqrt {2}}{2}}}
。通过旋转和缩小线性变换,得到单位双曲线下的情况,有:单位双曲线中双曲线扇形的面积是对应直角双曲线
x
y
=
1
{displaystyle xy=1}
下双曲角的 1/2。双曲角经常定义得如同虚数圆角。实际上,如果x是实数而i2 = −1,则所以双曲函数cosh和sinh可以通过圆函数来定义。这些恒等式不是从圆或旋转得来的,它们应当以无穷级数的方式来理解。特别是,可以将指数函数表达为由偶次项和奇次项组成,前者形成cosh函数,后者形成了sinh函数。cos函数的无穷级数可从cosh得出,通过把它变为交错级数,而sin函数可来自将sinh变为交错级数。上面的恒等式使用虚数i,从三角函数的级数的项中去掉交错因子(−1)n,来恢复为指数函数的那两部分级数。双曲函数可以通过虚数圆角定义为:这些复数形式的定义得出自欧拉公式。奥古斯都·德·摩根在其1849年出版的教科书《Trigonometry and Double Algebra》中将圆三角学扩展到了双曲线。威廉·金顿·克利福德在1878年使用双曲角来参数化单位双曲线。给定相同的角α,在双曲线上计算双曲角的量值(双曲扇形面积除以半径)得到双曲函数,角α得到三角函数。在单位圆和单位双曲线上,双曲函数与三角函数有如下的关系:与双曲函数有关的恒等式如下:由于双曲函数和三角函数之间的对应关系,双曲函数的恒等式和三角函数的恒等式之间也是一一对应的。对于一个已知的三角函数公式,只需要将其中的三角函数转成相应的双曲函数,并将含有有两个sinh的积的项(包括
coth
2
x
,
tanh
2
x
,
csch
2
x
,
sinh
x
sinh
y
{displaystyle coth ^{2}x,tanh ^{2}x,operatorname {csch} ^{2}x,sinh xsinh y}
)转换正负号,就可得到相应的双曲函数恒等式。如双曲函数也可以以泰勒级数展开:其中从双曲正弦和余弦的定义,可以得出如下恒等式:和因为指数函数可以定义为任何复数参数,也可以扩展双曲函数的定义为复数参数。函数sinh z和cosh z是全纯函数。指数函数与三角函数的关系由欧拉公式给出:所以:因此,双曲函数是关于虚部有周期的,周期为
2
π
i
{displaystyle 2pi i}
(对双曲正切和余切是
π
i
{displaystyle pi i}
).反双曲函数是双曲函数的反函数。它们的定义为:正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 阿米卡霉素阿米卡星(amikacin、amikin (amikacin))是一种氨基糖苷类抗生素,用于治疗多种细菌感染。阿米卡星依靠于细菌30S亚基结合,阻断细菌蛋白质合成而起到抗菌作用。阿米卡星一天可以给
- 爪哇猿人爪哇猿人(学名:Homo erectus erectus)又称爪哇人,是生活在更新世中期的直立人。其化石遗存是荷兰古生物学家欧仁·杜布瓦于1891年在荷属印尼东爪哇省的梭罗河畔发现的。当时杜布
- 空穴现象空穴现象(Cavitation),又译气穴现象、气蚀现象或空洞现象,指的是在流动的液体中气相的空穴 – 亦即极小的无液体空间(“气泡”或“空隙”) – 产生与消灭的一种物理现象,是力作用在
- 巢纪平巢纪平(1932年10月19日-),江苏无锡人,气象学家,中国科学院院士。巢纪平于1954年毕业于南京大学气象学系。此后前往中国科学院地球物理研究所工作。1964年升任副研究员。1978年起任
- 阿波比一世阿波比一世(英语:Apepi I),古埃及第十五王朝最重要的国王(约公元前1585年—约公元前1542年在位)。为西克索斯人后裔。他33年的统治记录在《兰德数学纸莎草书》上。初曾控制埃及大
- J·迈尔·H于尔根·赫曼·迈尔 (德语:Jürgen Hermann Mayer,1965年10月30日-),是一位德国建筑师及艺术家,生于斯图加特,他的建筑事务所J. MAYER H位于德国柏林。迈尔于德国斯图加特大学、美国
- 肯塔基大学坐标:38°02′N 84°30′W / 38.033°N 84.500°W / 38.033; -84.500肯塔基大学(英语:University of Kentucky)是位于美国肯塔基州莱克星顿的一所公立大学,始建于1865年,在校学生
- 空间填充模型空间填充模型(英语:Space-filling models)也称为calotte模型或CPK模型,CPK三个字母是来自Corey、Pauling(莱纳斯·鲍林)与Koltun。是一种与球棒模型类似,用来表现分子三维空间分布
- 1164年重要事件及趋势重要人物
- 结构基序结构模体(英语:structural motif,亦称为结构基序)是链状生物分子(如蛋白质或核酸)中的一种超二级结构,也存在于其它分子之中。结构模体使得我们无法预测蛋白的生物学功能:不同蛋白质