双曲正割

✍ dations ◷ 2025-02-23 17:01:32 #双曲正割
在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数 sinh {displaystyle sinh } 和双曲余弦函数 cosh {displaystyle cosh } ,从它们可以导出双曲正切函数 tanh {displaystyle tanh } 等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。函数 cosh ⁡ x {displaystyle cosh x!} 是关于y轴对称的偶函数。函数 sinh ⁡ x {displaystyle sinh x!} 是奇函数。如同当 t {displaystyle t} 遍历实数集 R {displaystyle mathbb {R} } 时,点( cos ⁡ t {displaystyle cos t!} , sin ⁡ t {displaystyle sin t!} )的轨迹是一个圆 x 2 + y 2 = 1 {displaystyle x^{2}+y^{2}=1} 一样,当 t {displaystyle t} 遍历实数集 R {displaystyle mathbb {R} } 时,点( cosh ⁡ t {displaystyle cosh t!} , sinh ⁡ t {displaystyle sinh t!} )的轨迹是单位双曲线(英语:Unit hyperbola) x 2 − y 2 = 1 {displaystyle x^{2}-y^{2}=1} 的右半边。这是因为有以下的恒等式:参数t不是圆角而是双曲角,它表示在x轴和连接原点和双曲线上的点( cosh ⁡ t {displaystyle cosh t!} , sinh ⁡ t {displaystyle sinh t!} )的直线之间的面积的两倍。在18世纪,约翰·海因里希·兰伯特引入双曲函数,并计算了双曲几何中双曲三角形的面积。自然对数函数是在直角双曲线 x y = 1 {displaystyle xy=1} 下定义的,可构造双曲线直角三角形,底边在线 y = x {displaystyle y=x} 上,一个顶点是原点,另一个顶点在双曲线。这里以自然对数即双曲角作为参数的函数,是自然对数的逆函数指数函数,即要形成指定双曲角u,在渐近线即x或y轴上需要有的x或y的值。显见这里的底边是 ( e u + e − u ) 2 2 {displaystyle left(e^{u}+e^{-u}right){frac {sqrt {2}}{2}}} ,垂线是 ( e u − e − u ) 2 2 {displaystyle left(e^{u}-e^{-u}right){frac {sqrt {2}}{2}}} 。通过旋转和缩小线性变换,得到单位双曲线下的情况,有:单位双曲线中双曲线扇形的面积是对应直角双曲线 x y = 1 {displaystyle xy=1} 下双曲角的 1/2。双曲角经常定义得如同虚数圆角。实际上,如果x是实数而i2 = −1,则所以双曲函数cosh和sinh可以通过圆函数来定义。这些恒等式不是从圆或旋转得来的,它们应当以无穷级数的方式来理解。特别是,可以将指数函数表达为由偶次项和奇次项组成,前者形成cosh函数,后者形成了sinh函数。cos函数的无穷级数可从cosh得出,通过把它变为交错级数,而sin函数可来自将sinh变为交错级数。上面的恒等式使用虚数i,从三角函数的级数的项中去掉交错因子(−1)n,来恢复为指数函数的那两部分级数。双曲函数可以通过虚数圆角定义为:这些复数形式的定义得出自欧拉公式。奥古斯都·德·摩根在其1849年出版的教科书《Trigonometry and Double Algebra》中将圆三角学扩展到了双曲线。威廉·金顿·克利福德在1878年使用双曲角来参数化单位双曲线。给定相同的角α,在双曲线上计算双曲角的量值(双曲扇形面积除以半径)得到双曲函数,角α得到三角函数。在单位圆和单位双曲线上,双曲函数与三角函数有如下的关系:与双曲函数有关的恒等式如下:由于双曲函数和三角函数之间的对应关系,双曲函数的恒等式和三角函数的恒等式之间也是一一对应的。对于一个已知的三角函数公式,只需要将其中的三角函数转成相应的双曲函数,并将含有有两个sinh的积的项(包括 coth 2 ⁡ x , tanh 2 ⁡ x , csch 2 ⁡ x , sinh ⁡ x sinh ⁡ y {displaystyle coth ^{2}x,tanh ^{2}x,operatorname {csch} ^{2}x,sinh xsinh y} )转换正负号,就可得到相应的双曲函数恒等式。如双曲函数也可以以泰勒级数展开:其中从双曲正弦和余弦的定义,可以得出如下恒等式:和因为指数函数可以定义为任何复数参数,也可以扩展双曲函数的定义为复数参数。函数sinh z和cosh z是全纯函数。指数函数与三角函数的关系由欧拉公式给出:所以:因此,双曲函数是关于虚部有周期的,周期为 2 π i {displaystyle 2pi i} (对双曲正切和余切是 π i {displaystyle pi i} ).反双曲函数是双曲函数的反函数。它们的定义为:正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 隐球菌病隐球菌病(英语:Cryptococcosis、Cryptococcal disease)是一种可能致命的真菌疾病,由一或二种真菌造成:新型隐球菌(Cryptococcus neoformans)与Cryptococcus gattii,两者原本都被认为
  • 羊水栓塞羊水栓塞是一种罕见及未被完全了解的产科紧急症候。指在分娩过程中,羊水、胎儿细胞、胎发、胎粪、皮屑等物,透过子宫基底的胎盘进入母体血液循环而诱发母体之发炎反应。这作用
  • 绿色化学绿色化学是一门新兴的化学分支,以“原子经济性”为原则,研究如何在产生目的产物的过程中充分利用原料及能源,减少有害物质的释放。绿色化学旨在将反应的效率达到最高,损耗降到最
  • 古英语古英语(古英语:Ænglisc,英语:Old English)或盎格鲁-撒克逊语(英语:Anglo-Saxon)是指从449年到1066年间在对应于今天英格兰和苏格兰东南部的人说的英语。古英语属于西日耳曼语,和古弗
  • 奏鸣曲奏鸣曲(Sonata)是种乐器音乐的写作方式,此字汇源自拉丁文的sonare,即发出声响。在古典音乐史上,此种曲式随着各个乐派的风格不同也有着不同的发展。奏鸣曲的曲式从古典乐派时期开
  • Lac操作子乳糖操纵子是一个在大肠杆菌及其他肠道菌科细菌内负责乳糖的运输及代谢的操纵子。它包含了三个相连的结构基因,启动子、终止子及操纵基因。乳糖操纵子受多种因素所调控,包括葡
  • 2000年第22次美国人口普查是由美国人口调查局进行的。通过普查,美国截至2000年4月1日共有居民281,421,906人,比1990年人口普查时的248,709,873人增加13.2%。美国的居民人口包括50个
  • 里尔科技大学里尔一大(法语:Université Lille 1 : Sciences et Technologies;又称里尔科技大学),是位于法国北部诺尔省阿斯克新城的一所大学,2018年与里尔二大、三大合并组成里尔大学。其有
  • 元亨寺坐标:22°31′N 120°12′E / 22.51°N 120.20°E / 22.51; 120.20元亨寺,原名元兴寺,又称作打鼓岩元亨寺,旧称岩仔、鼓山岩、打鼓岩,是位于台湾高雄市鼓山区鼓岩里(旧称兴隆里)的
  • 阶级实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性