峰度

✍ dations ◷ 2025-10-31 18:54:47 #概率论

在统计学中,峰度(Kurtosis)衡量实数随机变量概率分布的峰态。峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的。

四阶标准矩可以定义为:

其中μ4是四阶中心矩,σ是标准差。

在更通常的情况下,峰度被定义为四阶累积量除以二阶累积量的平方,它等于四阶中心矩除以概率分布方差的平方再减去3:

这也被称为超值峰度(excess kurtosis)。“减3”是为了让正态分布的峰度为0。

假定为个独立变量之和,且这些变量和具有相同的分布,那么:Kurt = Kurt / ,但如果峰度被定义为:μ4 / σ4,公式可变得更加复杂。

更一般地说,假定1, ..., 为方差相等的独立随机变量,那么:

而定义中如果不包含“减3”就无法成立。

如果超值峰度为正,称为尖峰态(leptokurtic)。如果超值峰度为负,称为低峰态(platykurtic)。

对于具有个值的样本,样本峰度为:

其中4是四阶样本中心矩,2是二阶中心矩(即使样本方差),是第th个值, x ¯ {\displaystyle {\overline {x}}} 为事先计算的方差,xi为第i个测量值, x ¯ {\displaystyle {\bar {x}}} 为事先计算的算术平均数。

在一些统计软件中,其公式有所差别。如EXCEL,计算样本的峰度公式如下:

相关

  • 贾各路易·里翁贾各路易·里翁(法语:Jacques-Louis Lions,1928年5月3日-2001年5月17日),法国数学家。他在偏微分方程和随机控制等领域做出贡献。
  • 亨德森阿瑟·亨德森(Arthur Henderson,1863年9月13日-1935年10月20日),英国铁模具制造商、工党政治家,1934年诺贝尔和平奖得主。此外,他曾在1908年至1910年、1914年至1917年与1931年至193
  • 181线市道181号 月眉-高树,是位于台湾高雄市、屏东县两县市之间的南北向县道。北起高雄市杉林区月眉,南至屏东县高树乡,全长共计19.752公里(公路总局资料)。今日列表・1961年列表注:灰字
  • 副热带高压赤道低压带信风带副热带高压带西风带副极地低压带极地东风带极地高压带亚热带高压(英语:Subtropical high,又称亚热带高气压、副热带高压、副热带高气压),其脊线称为副热带高压脊
  • 额济纳旗额济纳旗(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus
  • 柳馨远柳馨远(1622年一月二十一-1673年三月十九),朝鲜王朝文臣和实学者,性理学者。字德夫,号磻溪,党色的北人党的党员及许穆门人。
  • 赵 钥赵钥,字阆仙,山东莱阳县人,清朝政治人物。顺治十五年(1658年)戊戌科进士,官至太常寺少卿。工诗,有《因树屋集》。
  • 老大哥老大哥(英语:Big Brother)是乔治·奥威尔在他的反乌托邦小说《一九八四》中塑造的一个人物形象。老大哥是《一九八四》中大洋国的领袖,是党内的最高领导人。尽管书中自始至终没
  • 职业伤害工伤是指在工作中身体上的伤害。2007年,在美国有5,488人死于职业伤害,49,000死于与工作相关的伤害。美国国家职业安全卫生研究所(NIOSH)估测出在2007年有4百万美国工人遭受非致
  • 行政区 (德国)德国行政区(德语:Regierungsbezirk)是德国行政区划中的1.5级行政区,位于联邦州之下,县和无属县城市之上。人口和面积相当于中华人民共和国的地级,也相当于清代的府。注意并不是所