阿贝尔群

✍ dations ◷ 2025-11-12 14:00:09 #阿贝尔群论,群的性质,尼尔斯·阿贝尔

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

阿贝尔群(Abelian group)也称为交换群(commutative group)或可交换群,它是满足其元素的运算不依赖于它们的次序(交换律公理)的群。阿贝尔群推广了整数集合的加法运算。阿贝尔群以挪威数学家尼尔斯·阿贝尔命名。

阿贝尔群的概念是抽象代数的基本概念之一。其基本研究对象是模和向量空间。阿贝尔群的理论比其他非阿贝尔群简单。有限阿贝尔群已经被较为彻底地研究了。无限阿贝尔群理论则是目前正在研究的领域。

阿贝尔群的群运算符合交换律,因此阿贝尔群也被称为交换群。它由自身的集合和二元运算* 构成。它除了满足一般的群公理,即运算的结合律、有单位元、所有的元素都有逆元之外,还满足交换律公理

因为阿贝尔群的群运算满足交换律和结合律,群元素乘积的值与乘法运算时的次序无关。

而群运算不满足交换律的群被称为“非阿贝尔群”,或“非交换群”。

阿贝尔群有两种主要运算符号—加法和乘法。

一般地说,乘法符号是群的常用符号,而加法符号是模的常用符号。当同时考虑阿贝尔群和非阿贝尔群时,加法符号还可以用来强调阿贝尔群是特定群。

验证有限群是阿贝尔群,可以构造类似乘法表的一种表格(矩阵),它称为凯莱表。如果群 = {1 = , 2, ..., }在运算⋅下,则这个表的第(, )个表项包含乘积。群是阿贝尔群当且仅当这个表是关于主对角线是对称的(就是说这个矩阵是对称矩阵)。

这是成立的因为如果它是于阿贝尔群,则 = 。这蕴含了第(, )个表项等于第(, )个表项,就是说这个表示关于主对角线对称的。

矩阵即使是可逆矩阵,一般不形成在乘法下的阿贝尔群,因为矩阵乘法一般是不可交换的。但是某些矩阵的群是在矩阵乘法下的阿贝尔群 - 一个例子是2x2 旋转矩阵的群。

阿贝尔群是Camille Jordan以挪威数学家尼尔斯·阿贝尔命名的,他首先察觉到了阿贝尔首先发表的这种群与根式可解性的联系的重要性。

如果是自然数而是使用加号的阿贝尔群的一个元素,则可以定义为 + + ... + (个数相加)并且(−) = −()。以这种方式,变成在整数的环Z上的模。事实上,在Z上的模都可以被识别为阿贝尔群。

关于阿贝尔群(比如在主理想整环Z上的模)的定理经常可以推广到在任意主理想整环上的模。典型的例子是有限生成阿贝尔群的分类是在主理想整环上的有限生成模的结构定理的特殊情况。在有限生成阿贝尔群的情况下,这个定理保证阿贝尔群可以分解为挠群和自由阿贝尔群的直和。前者可以被写为形如Z/kZ对于素数的有限多个群的直和,而后者是有限多个Z的复本的直和。

如果,  :  →  是在阿贝尔群之间的两个群同态,则它们的和 + ,定义为( + )() = () + (),也是阿贝尔同态。(如果是非阿贝尔群则这就不成立。)所有从到的群同态的集合Hom(, )因此是自身方式下的阿贝尔群。

某种程度上类似于向量空间的维度,所有阿贝尔群都有秩。它定义为群的线性无关元素的最大集合的势。整数集和有理数集和所有的有理数集的子群都有秩1。

整数模以的循环群Z/Z是最常见的群的例子。已证实了任意有限阿贝尔群都同构于素数阶的有限循环群的直和,并且这些阶数是唯一确定的,形成了一个不变量(invariant)的完备系统。有限阿贝尔群的自同构群可以依据这些不变量来直接描述。有关理论最初发展自费迪南德·格奥尔格·弗罗贝尼乌斯和Ludwig Stickelberger(英语:Ludwig Stickelberger)在1879年的论文,后来被简化和推广到在主理想整环上的有限生成模,形成了线性代数的一个重要组成部分。

有限阿贝尔群的基本定理声称所有有限阿贝尔群都可以表达为素幂(prime-power)阶的循环子群的直和。这是有限生成阿贝尔群的基本定理在有零秩时的特殊情况。

阶的循环群 Z m n {\displaystyle \mathbb {Z} _{mn}} 与是互素的。可推出任何有限阿贝尔群同构于如下形式的直和

以任何下列规范方式:

例如, Z / 15 Z Z 15 {\displaystyle \mathbb {Z} /15\mathbb {Z} \cong \mathbb {Z} _{15}} 的自同构。要这么做,可利用如果分解为互素阶的子群的直和 {\displaystyle \oplus } ,则Aut( {\displaystyle \oplus } ) {\displaystyle \cong } ) {\displaystyle \oplus } )的事实(这里就不证明了)。

基本定理证明了要计算的自同构群,分别计算西罗子群的自同构群就足够了(也就是所有的循环子群的直和,每个都有的幂的阶)。固定一个素数并假设西罗子群的循环因子的指数是按递增次序安排的:

对于某个 > 0。需要找到

的自同构。一个特殊情况是在 = 1的时候,此时在西罗-子群中只有唯一一个循环素数幂因子。在这个情况下可以使用有限循环群的自同构的理论。另一个特殊情况是在为任意的但 = 1对于1 ≤ ≤ 的时候。这里考虑为有着形式

所以这个子群的元素可以被看作构成了在元素的有限域 F p {\displaystyle \mathbb {F} _{p}} 维向量空间。这个子群的自同构因此给出为可逆线性变换,因此

它早先证明了有阶

在最一般情况下,这里的和是任意的,自同构群更难于确定。但是已经知道了如果定义

并且

则有着特别的 ≥ , ≤ ,并且

可以检查这会生成作为特殊情况的前面例子的阶(参见)。


相关

  • 刚果共和国面积以下资讯是以2018年估计家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018
  • 缺甲鱼纲缺甲鱼纲(Anaspida)是一类已灭绝的无颌脊椎动物,他们第一次出现在志留纪早期,由于环境动荡,其中大多数物种在早泥盆纪都灭绝。曾经被视为七鳃鳗的祖先。缺甲鱼纲为小型海洋无颌鱼
  • 恐怖故事2《恐怖故事2》(韩语:무서운 이야기 2,英语:),是一部2013年上映的韩国电影。此部恐怖片集结众多新星演员演出各个单元。本片与第一部内容无关,而金智媛、金叡园亦再次演出。由上集《
  • 尼古拉·奥托维奇·埃森尼古拉·奥托维奇·埃森(俄语:Никола́й О́ттович фон Э́ссен,1860年12月11日-1915年5月7日)是一位俄罗斯帝国海军上将,被认为是俄罗斯海军历史上少有的
  • 克拉丽斯·利斯佩克托克拉丽斯·利斯佩克托(Clarice Lispector,1920年12月10日-1977年12月9日),巴西犹太裔女作家。生于俄国内战时期的乌克兰,自幼移民巴西,在巴西东北部城市累西腓长大,但直到1943年1月
  • 长乐钱氏大新屋长乐钱氏大新屋位于中国浙江省绍兴嵊州市长乐镇大街中段,由当地名人钱沛始建于清道光年间,为嵊州现存规模最大、屋宇最多、雕刻最丰富的民居宅第之一,现为长乐镇文化宫。建筑坐
  • 戴玑戴玑(1607年-1680年),字利衡。福建长泰县人。清朝政治人物。顺治六年(1649年)己丑科进士,授吏部主事,转湖广按察使司佥事。任陕西西宁道,因丁父艰没有前往。服除后补广西右江道。后
  • 女系家族女系家族(にょけいかぞく),本是日本作家山崎丰子的小说,后被拍成日剧。故事讲述一间名和服店的社长矢岛嘉藏突然因病逝世,留下了一大笔遗产.从而引起情妇滨田文乃及矢岛家三姊妹—
  • 韩国国防部电台韩国国防部电台(英语:MND Radio)是大韩民国针对朝鲜民主主义人民共和国制作的广播。广播语言为朝鲜语,用短波广播。电台于2010年10月开始试播,2011年3月开始不定期播放,2011年7月
  • 大薮站大薮站(日语:大藪駅/おおやぶえき  */?)是位于福冈县田川市大字川宫1457番2号,平成筑丰铁道的糸田线车站。车站编号为HC54。经营折扣店“MrMax”的MrMax控股(日语:ミスターマック