事件 (概率论)

✍ dations ◷ 2025-11-22 01:20:56 #概率论

在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。

假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {\displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:

由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。

当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {\displaystyle (\Sigma ,{\mathcal {F}},\mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {\displaystyle \Sigma } 、事件集合 F {\displaystyle {\mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {\displaystyle \mathbb {P} } 。其中的事件集合 F {\displaystyle {\mathcal {F}}} 是一个σ-代数,而取概率的运算 P {\displaystyle \mathbb {P} } 需要满足概率的加法公理(σ-Additive):

这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。

然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。

假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , {\displaystyle q_{1},q_{2},\cdots } 。对于每一个0到1之间的实数 a {\displaystyle a} ,小明将 a + q 1 , a + q 2 , {\displaystyle a+q_{1},a+q_{2},\cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {\displaystyle S_{a}} 。构造多个这样的集合 S a {\displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {\displaystyle S_{a}} 写成:

再令:

那么所得到的事件(也就是集合) T 1 , T 2 , {\displaystyle T_{1},T_{2},\cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {\displaystyle \mathbb {P} (T_{n})} 都是一样的。如果 P ( T n ) > 0 {\displaystyle \mathbb {P} (T_{n})>0} ,那么根据加法原则,

而如果 P ( T n ) = 0 {\displaystyle \mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:

因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {\displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。

两个随机事件之间可以有各种各样的关系。

如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。

在概率运算时,还有:

相关

  • 法莫替丁法莫替丁(INN:famotidine),商品名称为Pepcid,是一种组胺H2受体阻抗剂,主要用于抑制胃酸的分泌,并用于治疗消化性溃疡和胃食道逆流。与西咪替丁不同,法莫替丁等第二代H2受体阻抗剂对
  • 自然神论自然神论(英语:deism)是17到18世纪的英国和18世纪的法国出现的一个哲学观点,主要是回应牛顿力学对传统神学世界观的冲击。这个思想认为虽然上帝创造了宇宙和它存在的规则,但是在
  • 卡芒贝尔奶酪卡芒贝尔乳酪(Camembert),又译“金银币、卡门培尔、卡门贝尔、卡门伯”,是一种软的法国白霉圆饼形乳酪,以法国下诺曼第奥恩省Vimoutiers附近的村庄卡芒贝尔命名。卡芒贝尔于1791
  • 双体二聚体(Dimer)或称双体、二聚物在不同领域中有不同意义,但基本涵义都表示相同或同一种类的物质,以成双的型态出现,可能具有单一状态时没有的性质或功能。化学上,凡是两个分子结合
  • 南方州立理工大学南方州立理工大学(Southern Polytechnic State University),位于美国乔治亚州玛丽埃塔的一所公立大学,设立于1948年。2013年11月1日传出该校将与附近的肯尼索州立大学合并的消
  • 跨时区澳大利亚时区是覆盖澳大利亚及其属地三个时区的总称。三个时区分别为澳大利亚西部标准时间(AWST; UTC+08:00)、澳大利亚中部标准时间(ACST; UTC+09:30)和澳大利亚东部标准时间(AE
  • NISO美国国家信息标准组织(National Information Standards Organization,简称NISO)是美国的非营利标准制定组织,发展、维持并出版有关于出版业、书目与图书馆应用学的相关技术标准
  • 伊斯兰法庭联盟伊斯兰法院联盟(索马里语:Midowga Maxkamadaha Islaamiga,阿拉伯语:اتحاد المحاكم الإسلامية‎,英语:Islamic Courts Union,缩写:ICU),或译联合伊斯兰法院、伊斯
  • 青岛站青岛站,位于中国山东省青岛市市南区,是中铁济南铁路局和青岛地铁的一座铁路客运车站。国铁青岛站为特等站,路线位于地上,为尽端式车站;地铁青岛站为设置有联锁目标控制器的二级设
  • 四角落四角落(Four Corners)是美国西南方的领域,指以科罗拉多高原为中心的四个州边界交接的一点以及周边的地区。这四州从上方左侧顺时针方向数来,分别是犹他州、科罗拉多州、新墨西哥