事件 (概率论)

✍ dations ◷ 2025-04-03 10:37:05 #概率论

在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。

假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {\displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:

由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。

当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {\displaystyle (\Sigma ,{\mathcal {F}},\mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {\displaystyle \Sigma } 、事件集合 F {\displaystyle {\mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {\displaystyle \mathbb {P} } 。其中的事件集合 F {\displaystyle {\mathcal {F}}} 是一个σ-代数,而取概率的运算 P {\displaystyle \mathbb {P} } 需要满足概率的加法公理(σ-Additive):

这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。

然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。

假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , {\displaystyle q_{1},q_{2},\cdots } 。对于每一个0到1之间的实数 a {\displaystyle a} ,小明将 a + q 1 , a + q 2 , {\displaystyle a+q_{1},a+q_{2},\cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {\displaystyle S_{a}} 。构造多个这样的集合 S a {\displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {\displaystyle S_{a}} 写成:

再令:

那么所得到的事件(也就是集合) T 1 , T 2 , {\displaystyle T_{1},T_{2},\cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {\displaystyle \mathbb {P} (T_{n})} 都是一样的。如果 P ( T n ) > 0 {\displaystyle \mathbb {P} (T_{n})>0} ,那么根据加法原则,

而如果 P ( T n ) = 0 {\displaystyle \mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:

因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {\displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。

两个随机事件之间可以有各种各样的关系。

如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。

在概率运算时,还有:

相关

  • 休伦湖休伦湖(Lake Huron)是北美洲五大湖之一,位于美国密歇根州和加拿大安大略省之间。休伦湖由早期法国探险者命名,名字来源于居住于附近地区的印地安人休伦族。休伦湖水面的海拔高度
  • 西罗马帝国西罗马帝国是罗马帝国于286年被戴克里先分为两部分后把政权一分为二建立四帝共治制从而开始有的东西两部的概念,位处西部的部分即是最后分裂的西罗马帝国;而东部最后则成为东
  • 塞维索事件塞维索事件为发生于1976年7月10日12时37分的工业事故,位于意大利伦巴第大区米兰北方约20公里的小型化学工厂,为史上最严重的2,3,7,8-四氯双苯-p-戴奥辛(TCDD)污染事件。1976年时
  • 家庭圈子私人领域(英语:private sphere),是一个哲学与社会学概念,与公共领域相对,是指个体享有免于政府和其他社会团体的干扰的某一社会生活领域。公共领域理论认为,在资产阶级模型中,私人领
  • 南安大略right 人南安大略(英语:Southern Ontario),又称南安省,是加拿大安大略省的一区,位于法国河和阿尔冈金省立公园以南。连同帕里湾区和穆斯科卡区在内,本区约占安大略省总面积的14-15
  • 东京电视台株式会社东京电视(日语:株式会社テレビ東京,英语:TV TOKYO Corporation),通称“东京电视台”(テレビ東京),简称“东视”(テレ東)、“TX”(源自其识别呼号JOTX-TV)和“东京台”,是日本一家
  • 林肯·查菲林肯·达文波特·查菲(英语:Lincoln Davenport Chafee;1953年3月26日-),是一位美国政治人物,曾任沃威克市长、罗德岛州参议员及罗德岛州州长(英语:List of Governors of Rhode Island
  • 全国计划工作会议1970年全国计划工作会议,是指1970年2月15日至3月21日期间,中华人民共和国国务院召开的全国计划工作会议。会议旨在制定1970年的国民经济计划,并着手研究第四个五年计划纲要(草案
  • 马扎里沙里夫area_total_km2 人马扎里沙里夫(波斯语:مزار شریف‎)位于阿富汗北部邻近乌兹别克斯坦边境,是巴尔赫省的首府和阿富汗第四大城市,公路往东与昆都士连接,向东南通向首都喀
  • 玛雅刻本玛雅刻本是前哥伦布时期玛雅文明的文献,是以玛雅文字写在脱毛榕木的内树皮制成的纸上。这些刻本是由专业抄写员在神明的任命下写成的。玛雅人于5世纪开始制造自己的纸张,罗马