首页 >
反常塞曼效应
✍ dations ◷ 2025-02-23 15:07:34 #反常塞曼效应
塞曼效应(英语:Zeeman effect),在原子物理学和化学中的光谱分析里是指原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼译注发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应(anomalous Zeeman effect)译注。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效应也在核磁共振频谱学、电子自旋共振频谱学、磁振造影以及穆斯堡尔谱学方面有重要的应用。1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛伦兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛伦兹因为这一发现共同获得了1902年的诺贝尔物理学奖。1897年12月,普雷斯顿(T.Preston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乔治·乌伦贝克(G.E.Uhlenbeck,1900-1974)和撒姆尔·高斯密特(S.A.Goudsmit,1902-1978)提出了电子自旋假设,很好地解释了反常塞曼效应。应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆孙在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。塞曼效应也可以用来测量天体的磁场。1908年美国天文学家乔治·海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。不加外磁场时,原子在两个能级E1和E2(E1<E2)之间跃迁的能量差为原子核的磁矩比电子磁矩小大约三个数量级。如果只考虑电子的磁矩对原子总磁矩的贡献,那么磁场引起的附加能量为这里将磁感应强度B的方向取为z轴方向,μZ是磁矩在z方向上的投影。mJ是电子总角动量J在z方向投影的量子数,可以取-J,-J+1,…J-1,J共2J+1个值,gJ是电子总角动量的朗德因子,μB是玻尔磁子。这样,原子的每一个能级分裂成若干分立的能级,两个能级之间跃迁的能量差为:对于自旋为零的体系有
g
1
J
=
g
2
J
=
1
{displaystyle g_{1J}=g_{2J}=1}
。由于跃迁的选择定则
Δ
m
J
=
m
2
J
−
m
1
J
=
0
,
±
1
{displaystyle Delta m_{J}=m_{2J}-m_{1J}=0,pm 1}
,频率ν只有三个数值:因此一条频率为ν的谱线在外磁场中分裂成三条谱线,相互之间频率间隔相等,为
μ
B
B
h
{displaystyle {frac {mu _{B}B}{h}}}
。洛伦兹应用经典电磁理论解释了正常塞曼效应,计算出了这个频率间隔。通常把这个能量差的波数间隔
Δ
(
1
λ
)
=
μ
B
B
h
c
=
e
ℏ
B
2
m
e
h
c
=
e
B
4
π
m
e
c
≈
46.7
B
m
−
1
T
−
1
{displaystyle Delta ({frac {1}{lambda }})={frac {mu _{B}B}{hc}}={frac {ehbar B}{2m_{e}hc}}={frac {eB}{4pi m_{e}c}}approx 46.7Bm^{-1}T^{-1}}
称为洛伦兹单位,符号
L
^
{displaystyle {hat {L}}}
。镉的643.847nm(1D2态向1P1态的跃迁)谱线在磁场不太强时就是表现出正常塞曼效应。这两个态的g都等于1,在外磁场中,1D2分裂成5个子能级,1P1分裂成3个子能级,由于选择定则,这些子能级之间有9种可能的跃迁,有3种可能的能量差值,所以谱线分裂成3条。对于Δm=+1,原子在磁场方向的角动量减少了一个
ℏ
{displaystyle hbar }
,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量
ℏ
{displaystyle hbar }
,方向与电矢量旋转方向构成右手螺旋,称为σ+偏振,是左旋偏振光。反之,对于Δm=-1,原子在磁场方向的角动量增加了一个
ℏ
{displaystyle hbar }
,光子具有与磁场方向相反的角动量
ℏ
{displaystyle hbar }
,方向与电矢量旋转方向构成左手螺旋,称为σ-偏振,是右旋偏振光。对于Δm=0,原子在磁场方向的角动量不变,称为π偏振。如果沿磁场方向观察,只能观察到σ+和σ-谱线的左旋偏振光和右旋偏振光,观察不到π偏振的谱线。如果在垂直于磁场方向观察,能够观察到原谱线分裂成3条:中间一条是π谱线,是线偏振光,偏振方向与磁场方向平行,σ+和σ-线分居两侧,同样是线偏振光,偏振方向与磁场方向垂直。只有自旋为单态,即总自旋为0的谱线才表现出正常塞曼效应。非单态的谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是3条,间隔也不一定是一个洛伦兹单位。例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞曼效应。589.6nm的谱线是2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强时,在外磁场作用下,2S1/2态能级分裂成两个子能级,2P1/2态也分裂成两个子能级,但由于两个态的朗德因子不同,谱线分裂成4条,中间两条是π线,外侧两条分别是σ+线和σ-线。589.0nm的谱线是2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成四个子能级,因此589.6nm的谱线分裂成6条。中间两条π线,外侧两边各两条σ线。实验中不仅可以观察到光谱发射线的塞曼效应,吸收线也会发生塞曼效应,这被称为逆塞曼效应。只有当外磁场的强度比较弱,不足以破坏自旋-轨道耦合时才会出现反常塞曼效应,这时自旋角动量和轨道角动量分别围绕总角动量作快速进动,总角动量绕外磁场作慢速进动。当磁场很强时,自旋角动量和轨道角动量不再合成总角动量,而是分别围绕外磁场进动。这时反常塞曼效应被帕邢-巴克效应所取代,其效果是恢复到正常塞曼效应,即谱线分裂成3条,相互之间间隔一个洛伦兹单位。这里磁场的“强”与“弱”是相对的,例如3T的磁场对于钠589.6nm和589.0nm的双重线是弱磁场,不会引起帕邢-巴克效应,但对于锂的670.785nm和670.800nm的双重线是强磁场,足够观察到帕邢-巴克效应。
相关
- 凡士林凡士林(英语:Vaseline)是一种石油胶(英语:petroleum jelly)(石化制胶状物)的通用商标,同时亦为联合利华所生产的个人清洁用品、除臭用品、体香剂、润肤霜与润滑剂品牌。凡士林的最早
- 南亚语系南亚语系旧称孟—高棉语系,也译作澳斯特罗-亚细亚语系(或澳亚语系),是世界主要语系之一。该语系主要分布于中南半岛、印度比哈尔邦和尼科巴群岛、孟加拉国以及中国云南等地,使用
- 九州大学九州大学(日语:九州大学/きゅうしゅうだいがく Kyūshū daigaku;英语译名:Kyushu University),简称九大(きゅうだい),是日本一所本部位于福冈县福冈市西区元冈的国立研究型综合大学
- 阿特贝限阿特贝限(Atterberg limits),台湾称为阿太堡限度,是指土壤的各个结持度阶段间的分界点含水量。它亦称为结持限,是阿特贝值的一部分。阿特贝限广泛用于农业、工程、建筑、陶瓷、塑
- 模块模块是指由数个基础功能组件组成的特定功能组件,可用来组成具完整功能之系统、设备或程序。模块通常都会具有相同的制程或逻辑,更改其组成组件可调适其功能或用途。模块也可以
- 加权平均数加权平均数与算术平均数类似,不同点在于,数据中的每个点对于平均数的贡献并不是相等的,有些点要比其他的点更加重要。加权平均数的概念在描述统计学中具有重要的意义,并且在其他
- NANOGn/an/an/an/an/an/an/an/an/an/aNANOG(读法:nanOg)是一种对未分化的胚胎干细胞(ESC)自我更新至关重要的转录因子。人体的NANOG蛋白质由NANOG基因编码。人类NANOG蛋白质是一种长30
- 鼠标鼠标是一种很常见及常用的电脑输入设备,它可以对当前屏幕上的游标进行定位,并通过按键和滚轮设备对游标所经过位置的屏幕元素进行操作。鼠标的鼻祖于1968年出现。美国科学家道
- DSL数字用户线路(Digital Subscriber Line,缩写:DSL)是通过铜线或者本地电话网提供数字连接的一种技术。它的历史要追溯到1988年,贝尔实验室一位工程师设计了一种方法可以让数字信号
- 877年重要事件及趋势逝世重要人物