柯西-利普希茨定理

✍ dations ◷ 2025-06-19 20:08:46 #微分方程,数学定理,利普希茨映射

在数学中,柯西-利普希茨定理(Cauchy-Lipschitz Theorem),又称皮卡-林德勒夫定理(Picard-Lindelöf Theorem),保证了一阶常微分方程的局部解以至最大解的存在性和唯一性。此定理最早由奥古斯丁·路易·柯西于1820年发表,但直到1868年,才由鲁道夫·利普希茨给出确定的形式。另一个很常见的叫法是皮卡-林德勒夫定理,得名于数学家埃米尔·皮卡和恩斯特·林德勒夫。

E为一个完备的有限维赋范向量空间(即一个巴拿赫空间),f为一个取值在E上的函数:

其中U为E中的一个开集,I是 R {\displaystyle \mathbb {R} } 中的一个区间。考虑以下的一阶非线性微分方程:

如果f关于t连续,并在U中满足利普希茨条件,也就是说,

那么对于任一给定的初始条件: x ( t 0 ) = x 0 {\displaystyle x(t_{0})=x_{0}} ,其中 t 0 I {\displaystyle t_{0}\in I} x 0 U {\displaystyle x_{0}\in U} ,微分方程(1)存在一个解 ( J , x ( t ) ) {\displaystyle (J,x(t))} ,其中 J I {\displaystyle J\subset I} 是一个包含 t 0 {\displaystyle t_{0}} 的区间, x ( t ) {\displaystyle x(t)} 是一个从 J {\displaystyle J} 射到 U {\displaystyle U} 的函数,满足初始条件和微分方程(1)。

局部唯一性:在包含点 t 0 {\displaystyle t_{0}} 的足够小的 J {\displaystyle J} 区间上,微分方程(1)的解是唯一的(或者说,方程所有的解在足够小的区间上都是重叠的)。

这个定理有点像物理学中的决定论思想:当我们知道了一个系统的特性(微分方程)和在某一时刻系统的情况( x ( t 0 ) = x 0 {\displaystyle x(t_{0})=x_{0}} )时,下一刻的情况是唯一确定的。

一个简洁的证明思路为构造一个总是满足初始条件的函数递归序列 y n + 1 = Φ ( y n ) {\displaystyle y_{n+1}=\Phi (y_{n})} ,使得 Φ ( y n ) = f ( y n , t ) {\displaystyle \Phi ^{\prime }(y_{n})=f(y_{n},t)} ,这样,如果这个序列有一个收敛点 y {\displaystyle y} ,那么 y {\displaystyle y} 为函数 Φ {\displaystyle \Phi } 的不动点,这时就有 y = Φ ( y ) = f ( y , t ) {\displaystyle y^{\prime }=\Phi ^{\prime }(y)=f(y,t)} ,于是我们构造出了一个解 y {\displaystyle y} 。为此,我们从常数函数

这样构造出来的函数列 ( y i ) i 0 {\displaystyle (y_{i})_{i\geq 0}} 中的每个函数都满足初始条件。并且由于 f {\displaystyle f} U {\displaystyle U} 中满足利普希茨条件,当区间足够小的时候, Φ {\displaystyle \Phi } 成为一个收缩映射。根据完备空间的不动点存在定理,存在关于 Φ {\displaystyle \Phi } 的稳定不动点,于是可知微分方程(1)的解存在。

由于收缩映射的局部稳定不动点只有一个,因此在足够小的区间内解是唯一的。

局部的柯西-利普希茨定理并没有说明在较大区域上解的情况。事实上,对于微分方程(1)的任意解   ( J , x ( t ) ) {\displaystyle \ (J,x(t))} ( J , x ( t ) ) {\displaystyle (J^{\prime },x^{\prime }(t))} ,定义一个序关系:   ( J , x ( t ) ) {\displaystyle \ (J,x(t))} 小于 ( J , x ( t ) ) {\displaystyle (J^{\prime },x^{\prime }(t))} 当且仅当 J J {\displaystyle J\subset J^{\prime }} ,并且 x ( t ) {\displaystyle x^{\prime }(t)}   J {\displaystyle \ J} 上的值与   x ( t ) {\displaystyle \ x(t)} 一样。在这个定义之下,柯西-利普希茨定理断言,微分方程的最大解是唯一存在的。

解的唯一性:假设有两个不同的最大解,那么由局部柯西-利普希茨定理可以证明其重叠部分的值相同,将两者不同的部分分别延伸在重叠部分上,则会得到一个更“大”的解(只需验证它满足微分方程),矛盾。因此解唯一。

解的存在性:证明需要用到佐恩引理,构造所有解的并集。

对于一元的高阶常微分方程

只需构造向量 Y ( t ) = ( y ( t ) , y ( t ) ,   ,   y ( n 1 ) ( t ) ) {\displaystyle Y(t)=(y(t),y'(t),\ \dots ,\ y^{(n-1)}(t))} 和相应的映射   Φ {\displaystyle \ \Phi } ,就可以使得(2)变为 Y ( t ) = Φ ( Y ( t ) , t ) {\displaystyle Y^{\prime }(t)=\Phi (Y(t),t)} 。这时的初始条件为 Y ( t 0 ) = Y 0 {\displaystyle Y(t_{0})=Y_{0}} ,即

对于偏微分方程,有柯西-利普希茨定理的扩展形式:柯西-克瓦列夫斯基定理,保证了偏微分方程的解的存在性和唯一性。

相关

  • 气管气管(trachea)是连接喉部与肺部的通道,腹侧由软骨环组成,背侧由平滑肌所组成,向上以声带为出口,向下分支称之为支气管(bronchus)。组成气管的软骨为透明软骨。Template:Lower respir
  • 次声学次声学,顾名思义就是研究次声的产生、传播、接收与应用的声学分支。次声是指频率在20赫兹以下,不能被人耳辨认的声音。最初人们只能从自然界中接收到高能量的次声,高能炸药和核
  • 康拉德·格斯纳康拉德·格斯纳(德语:Conrad Gesner,1516年3月26日-1565年12月13日),瑞士博物学家、目录学家。他的五卷本巨著《动物史》涵盖广泛,且配有精确的插图,被认为是动物学研究的起源之作。
  • 马尔可夫链蒙特卡洛马尔可夫链蒙特卡洛(英语:Markov chain Monte Carlo,MCMC)方法(含随机游走蒙特卡洛方法)是一组用马氏链从随机分布取样的算法,之前步骤的作为底本。步数越多,结果越好。创建一个具有
  • 翟灏翟灏可以指:
  • 海丰话海丰话是汉藏语系汉语族闽语支闽南语的一种方言,通行于中国广东省汕尾市海丰县中部、东南部和沿海地区,包括海城、鲘门、赤坑、大湖、汕尾、马宫等地。属闽南语的泉漳片。海丰
  • 蟾蜍山蟾蜍山,又名内埔山,为国立台湾科技大学之校地,位于台北市大安区及文山区,位于台北盆地南边的芳兰山与宝藏岩(观音山)之间,南与仙迹岩相望。山顶海拔128米。山区西面属于内政部警政
  • 莫利诺咖啡馆莫利诺咖啡馆(Confitería El Molino)是一个新艺术运动风格的咖啡馆,位于卡亚俄大道和里瓦达维亚大道转角,阿根廷国民议会前方。1915年,一位著名的糕点师卡耶塔诺·布伦纳,委托意
  • CA/浏览器论坛证书颁发机构浏览器论坛,也称CA/浏览器论坛(英语:CA/Browser Forum)、证书机构与浏览器论坛,它是一个证书颁发机构、网页浏览器软件供应商、操作系统,以及其他采用PKI的应用程序的
  • 菲力普·考夫曼菲力普·考夫曼(英语:Philip Kaufman,1936年10月23日-)是一名美国男导演、监制、编剧和演员。他所执导的电影风格被形容为“特立独行”和“反独裁”。