柯西-利普希茨定理

✍ dations ◷ 2025-12-09 15:49:25 #微分方程,数学定理,利普希茨映射

在数学中,柯西-利普希茨定理(Cauchy-Lipschitz Theorem),又称皮卡-林德勒夫定理(Picard-Lindelöf Theorem),保证了一阶常微分方程的局部解以至最大解的存在性和唯一性。此定理最早由奥古斯丁·路易·柯西于1820年发表,但直到1868年,才由鲁道夫·利普希茨给出确定的形式。另一个很常见的叫法是皮卡-林德勒夫定理,得名于数学家埃米尔·皮卡和恩斯特·林德勒夫。

E为一个完备的有限维赋范向量空间(即一个巴拿赫空间),f为一个取值在E上的函数:

其中U为E中的一个开集,I是 R {\displaystyle \mathbb {R} } 中的一个区间。考虑以下的一阶非线性微分方程:

如果f关于t连续,并在U中满足利普希茨条件,也就是说,

那么对于任一给定的初始条件: x ( t 0 ) = x 0 {\displaystyle x(t_{0})=x_{0}} ,其中 t 0 I {\displaystyle t_{0}\in I} x 0 U {\displaystyle x_{0}\in U} ,微分方程(1)存在一个解 ( J , x ( t ) ) {\displaystyle (J,x(t))} ,其中 J I {\displaystyle J\subset I} 是一个包含 t 0 {\displaystyle t_{0}} 的区间, x ( t ) {\displaystyle x(t)} 是一个从 J {\displaystyle J} 射到 U {\displaystyle U} 的函数,满足初始条件和微分方程(1)。

局部唯一性:在包含点 t 0 {\displaystyle t_{0}} 的足够小的 J {\displaystyle J} 区间上,微分方程(1)的解是唯一的(或者说,方程所有的解在足够小的区间上都是重叠的)。

这个定理有点像物理学中的决定论思想:当我们知道了一个系统的特性(微分方程)和在某一时刻系统的情况( x ( t 0 ) = x 0 {\displaystyle x(t_{0})=x_{0}} )时,下一刻的情况是唯一确定的。

一个简洁的证明思路为构造一个总是满足初始条件的函数递归序列 y n + 1 = Φ ( y n ) {\displaystyle y_{n+1}=\Phi (y_{n})} ,使得 Φ ( y n ) = f ( y n , t ) {\displaystyle \Phi ^{\prime }(y_{n})=f(y_{n},t)} ,这样,如果这个序列有一个收敛点 y {\displaystyle y} ,那么 y {\displaystyle y} 为函数 Φ {\displaystyle \Phi } 的不动点,这时就有 y = Φ ( y ) = f ( y , t ) {\displaystyle y^{\prime }=\Phi ^{\prime }(y)=f(y,t)} ,于是我们构造出了一个解 y {\displaystyle y} 。为此,我们从常数函数

这样构造出来的函数列 ( y i ) i 0 {\displaystyle (y_{i})_{i\geq 0}} 中的每个函数都满足初始条件。并且由于 f {\displaystyle f} U {\displaystyle U} 中满足利普希茨条件,当区间足够小的时候, Φ {\displaystyle \Phi } 成为一个收缩映射。根据完备空间的不动点存在定理,存在关于 Φ {\displaystyle \Phi } 的稳定不动点,于是可知微分方程(1)的解存在。

由于收缩映射的局部稳定不动点只有一个,因此在足够小的区间内解是唯一的。

局部的柯西-利普希茨定理并没有说明在较大区域上解的情况。事实上,对于微分方程(1)的任意解   ( J , x ( t ) ) {\displaystyle \ (J,x(t))} ( J , x ( t ) ) {\displaystyle (J^{\prime },x^{\prime }(t))} ,定义一个序关系:   ( J , x ( t ) ) {\displaystyle \ (J,x(t))} 小于 ( J , x ( t ) ) {\displaystyle (J^{\prime },x^{\prime }(t))} 当且仅当 J J {\displaystyle J\subset J^{\prime }} ,并且 x ( t ) {\displaystyle x^{\prime }(t)}   J {\displaystyle \ J} 上的值与   x ( t ) {\displaystyle \ x(t)} 一样。在这个定义之下,柯西-利普希茨定理断言,微分方程的最大解是唯一存在的。

解的唯一性:假设有两个不同的最大解,那么由局部柯西-利普希茨定理可以证明其重叠部分的值相同,将两者不同的部分分别延伸在重叠部分上,则会得到一个更“大”的解(只需验证它满足微分方程),矛盾。因此解唯一。

解的存在性:证明需要用到佐恩引理,构造所有解的并集。

对于一元的高阶常微分方程

只需构造向量 Y ( t ) = ( y ( t ) , y ( t ) ,   ,   y ( n 1 ) ( t ) ) {\displaystyle Y(t)=(y(t),y'(t),\ \dots ,\ y^{(n-1)}(t))} 和相应的映射   Φ {\displaystyle \ \Phi } ,就可以使得(2)变为 Y ( t ) = Φ ( Y ( t ) , t ) {\displaystyle Y^{\prime }(t)=\Phi (Y(t),t)} 。这时的初始条件为 Y ( t 0 ) = Y 0 {\displaystyle Y(t_{0})=Y_{0}} ,即

对于偏微分方程,有柯西-利普希茨定理的扩展形式:柯西-克瓦列夫斯基定理,保证了偏微分方程的解的存在性和唯一性。

相关

  • G·科里格蒂·特蕾莎·科里(Gerty Theresa Cori,出生名为拉德尼茨,Radnitz,1896年8月15日-1957年10月26日),美国生物化学家,1947年她与丈夫卡尔·斐迪南·科里以及阿根廷医生贝尔纳多·奥赛
  • 魏晋魏晋南北朝(220年—589年),又称三国两晋南北朝,是中国历史上的一段长达三百多年的时期,朝代更迭速度快,存在有多个政权并存的局面,相当长的时间是南北对峙。这个时期由220年曹丕篡
  • 山谷百合铃兰(学名:Convallaria majalis,英文:Lily of the Valley,法文:Muguet de mai),也称山谷百合、风铃草、君影草,是铃兰属中的唯一种,味甜,高毒性。原产北半球温带,欧、亚及北美洲和中国的
  • 探险家探险家是为了探测新事物等目的而深入危险或不为人知的地方进行探索的人。探险者通常是来自一个国家或文明最先到达某地方的人。也可以指冒险家、旅行家或者职业航海家、飞行
  • 50S核糖体亚基50核糖体亚基是原核细胞内70S核糖体中的较大亚基。该亚基由一条5S rRNA、一条23S rRNA及约34个核糖体蛋白质分子构成,在原核翻译中负责在tRNA转运来的氨基酸分子之间形成肽键
  • 复数 (语法)复数,或称众数(英语:plural,可简写为pl),在语言学中是词素的其中一种,常和单数相对,在没有双数概念的语言中用于标示多于一个的物件,在有双数概念的语言中则表示多于两个的名词数量。
  • 反正弦反正弦(arcsine, arcsin {\displaystyle \arcsin } , sin − 1
  • 内尔·波登内尔·波登(Neil H. Borden,1895年-1980年)是美国的营销学及广告学名誉教授,终其40年在哈佛商业学校的教学生涯都跟广告、广告管理及其影响相关,是相关研突的殿堂级人马。他在1948
  • 狮子和会唱会跳的百灵鸟《狮子和会唱会跳的百灵鸟》(德语:Das singende springende Löweneckerchen),又译《少女和狮子》,是格林兄弟收集的一则德国童话,也是《格林童话》中的第88个故事。它是AT分类法
  • 成龙的特技成龙的特技(英语:Jackie Chan: My Stunts)是一部讲述成龙在各部出演电影中如何利用特技效果的纪录片。由成龙现身说法,亲自剖析他在众多影片中如何利用特技效果。还有一些道具,譬