均差

✍ dations ◷ 2025-12-01 02:13:02 #微分学,数值分析

均差(Divided differences)是递归除法过程。在数值分析中,可用于计算牛顿多项式形式的多项式插值的系数。在微积分中,均差与导数一起合称差商,是对函数在一个区间内的平均变化率的测量。

均差也是一种算法,查尔斯·巴贝奇的差分机,是他在1822年发表的论文中提出的一种早期的机械计算机,在历史上意图用来计算对数表和三角函数表, 它设计在其运算中使用这个算法。

给定n+1个数据点

定义前向均差为:

定义后向均差为:

假定数据点给出为函数 ƒ,

其均差可以写为:

对函数 ƒ 在节点 0, ...,  上的均差还有其他表示法,如:

给定ν=0:

为了使涉及的递归过程更加清楚,以列表形式展示均差的计算过程:

用数学归纳法可证明:

此公式体现了均差的对称性质。故可推知:任意调换数据点次序,其值不变。

通过对换 n 阶均差中(x0,y0)与(xn-1,yn-1),可得到等价定义:

这个定义有着不同的计算次序:

以列表形式展示这个定义下均差的计算过程:

牛顿插值公式,得名于伊萨克·牛顿爵士,最早发表为他在1687年出版的《自然哲学的数学原理》中第三编“宇宙体系”的引理五,此前詹姆斯·格雷果里于1670年和牛顿于1676年已经分别独立得出这个成果。一般称其为连续泰勒展开的离散对应。

使用均差的牛顿插值法为:

可以在计算过程中任意增添节点如点(xn+1,yn+1),只需计算新增的n+1阶均差及其插值基函数,而无拉格朗日插值法需重算全部插值基函数之虞。

对均差采用展开形式:

以2阶均差牛顿插值为例:

当数据点呈等距分布的时候,这个特殊情况叫做“前向差分”。它们比计算一般的均差要容易。

给定n+1个数据点

有着

定义前向差分为:

前向差分所对应的均差为:

差分的展开形式是均差展开形式的特殊情况:

这里的表达式

是二项式系数,其中的(n)k是“下降阶乘幂”,空积(n)0被定义为1。

其对应的牛顿插值公式为:

牛顿在1665年得出并在1671年写的《流数法》中发表了ln(1+x)的无穷级数,在1666年得出了arcsin(x)和arctan(x)的无穷级数,在1669年的《分析学》中发表了sin(x)、cos(x)、arcsin(x)和ex的无穷级数;莱布尼茨在1673年大概也得出了sin(x)、cos(x)和arctan(x)的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa》中研讨了“有限差分”方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。

他对牛顿的均差的步长取趋于0的极限,得出:

使用普通函数记号表示幂运算, p n ( x ) = x n {\displaystyle p_{n}(x)=x^{n}} ,有:

此中n+1元m次齐次多项式的记法同于多项式定理。

泰勒级数和任何其他的函数级数,在原理上都可以用来逼近均差。将泰勒级数表示为:

均差的泰勒级数为:

n {\displaystyle n} 项消失了,因为均差的阶高于多项式的阶。可以得出均差的泰勒级数本质上开始于:

依据均差中值定理(英语:Mean value theorem (divided differences)),这也是均差的最简单逼近。

均差还可以表达为

这里的Bn-1是数据点x0,...,xn的n-1次B样条,而f(n)是函数f的n阶导数。这叫做均差的皮亚诺形式,而Bn-1是均差的皮亚诺核。

相关

  • 120110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 西方墨点法Western印迹法(英语:Western blot)或称“蛋白质转渍法”、“免疫印迹法”(immunoblot)或“西式吸印杂交”,是分子生物学、生物化学和免疫遗传学中常用的一种实验方法,也是HIV检测的
  • 宪法监督委员会保守派控制:宪法监护委员会(波斯语:شورای نگهبان قانون اساسی‎)是伊朗由6名乌理玛(伊斯兰教神学者或神职人员)和6名律师组成的集行政、立法、司法职责于一
  • 黑龙江省军区中国人民解放军黑龙江省军区,是中国人民解放军现属中央军委国防动员部的一个省级军区,管辖范围为黑龙江省。1949年4月27日,龙江、嫩江军事部合并为黑龙江省军事部。1950年7月,朝
  • 最佳美术设计台湾金马奖最佳美术设计每年由财团法人中华民国电影事业发展基金会颁发。
  • 勒维斯托克山国家公园雷夫尔斯托克山国家公园(英语:Mount Revelstoke National Park)是一座位于加拿大不列颠哥伦比亚的国家公园,建于1914年。
  • 故障分析故障分析,又称为故障诊断,是指为了确定故障原因以及如何防止其再次发生而收集和分析数据的过程。故障分析乃是制造行业众多分支之中的一门重要学科。例如,在电子行业,新产品开发
  • 味觉感受器味觉感受器是一种专司味觉的受体器官,包括诸如TAS2R16及TAS2R38等。味觉感受器被分成两大类:人类苦味感受器的基因分别被命名为TAS2R1至TAS2R64,然而其中有不少部分是空白的,包
  • 装甲兵装甲兵是以坦克、装甲输送车等为基本单位的战斗兵种。具有火力、机动力和装甲防护力相结合的特点。是陆军的重要突击力量。
  • 普卡孙托山坐标:14°46′59″S 72°35′00″W / 14.78306°S 72.58333°W / -14.78306; -72.58333普卡孙托山(Puka Suntu),是秘鲁的山峰,位于该国南部阿雷基帕大区,由拉乌尼翁省的普伊卡区负