均差

✍ dations ◷ 2025-11-26 18:58:45 #微分学,数值分析

均差(Divided differences)是递归除法过程。在数值分析中,可用于计算牛顿多项式形式的多项式插值的系数。在微积分中,均差与导数一起合称差商,是对函数在一个区间内的平均变化率的测量。

均差也是一种算法,查尔斯·巴贝奇的差分机,是他在1822年发表的论文中提出的一种早期的机械计算机,在历史上意图用来计算对数表和三角函数表, 它设计在其运算中使用这个算法。

给定n+1个数据点

定义前向均差为:

定义后向均差为:

假定数据点给出为函数 ƒ,

其均差可以写为:

对函数 ƒ 在节点 0, ...,  上的均差还有其他表示法,如:

给定ν=0:

为了使涉及的递归过程更加清楚,以列表形式展示均差的计算过程:

用数学归纳法可证明:

此公式体现了均差的对称性质。故可推知:任意调换数据点次序,其值不变。

通过对换 n 阶均差中(x0,y0)与(xn-1,yn-1),可得到等价定义:

这个定义有着不同的计算次序:

以列表形式展示这个定义下均差的计算过程:

牛顿插值公式,得名于伊萨克·牛顿爵士,最早发表为他在1687年出版的《自然哲学的数学原理》中第三编“宇宙体系”的引理五,此前詹姆斯·格雷果里于1670年和牛顿于1676年已经分别独立得出这个成果。一般称其为连续泰勒展开的离散对应。

使用均差的牛顿插值法为:

可以在计算过程中任意增添节点如点(xn+1,yn+1),只需计算新增的n+1阶均差及其插值基函数,而无拉格朗日插值法需重算全部插值基函数之虞。

对均差采用展开形式:

以2阶均差牛顿插值为例:

当数据点呈等距分布的时候,这个特殊情况叫做“前向差分”。它们比计算一般的均差要容易。

给定n+1个数据点

有着

定义前向差分为:

前向差分所对应的均差为:

差分的展开形式是均差展开形式的特殊情况:

这里的表达式

是二项式系数,其中的(n)k是“下降阶乘幂”,空积(n)0被定义为1。

其对应的牛顿插值公式为:

牛顿在1665年得出并在1671年写的《流数法》中发表了ln(1+x)的无穷级数,在1666年得出了arcsin(x)和arctan(x)的无穷级数,在1669年的《分析学》中发表了sin(x)、cos(x)、arcsin(x)和ex的无穷级数;莱布尼茨在1673年大概也得出了sin(x)、cos(x)和arctan(x)的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa》中研讨了“有限差分”方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。

他对牛顿的均差的步长取趋于0的极限,得出:

使用普通函数记号表示幂运算, p n ( x ) = x n {\displaystyle p_{n}(x)=x^{n}} ,有:

此中n+1元m次齐次多项式的记法同于多项式定理。

泰勒级数和任何其他的函数级数,在原理上都可以用来逼近均差。将泰勒级数表示为:

均差的泰勒级数为:

n {\displaystyle n} 项消失了,因为均差的阶高于多项式的阶。可以得出均差的泰勒级数本质上开始于:

依据均差中值定理(英语:Mean value theorem (divided differences)),这也是均差的最简单逼近。

均差还可以表达为

这里的Bn-1是数据点x0,...,xn的n-1次B样条,而f(n)是函数f的n阶导数。这叫做均差的皮亚诺形式,而Bn-1是均差的皮亚诺核。

相关

  • 正极在电池中,电极一般指与电解质溶液发生氧化还原反应的位置。电极有正负之分,正极指电位(电势)较高的一端,负极指电位较低的一端。一般正极为阴极,获得电子,发生还原反应,负极则为阳极
  • 低温贮藏深低温保存或超低温保存(英语: cryopreservation),指将生物、生命组织、或细胞等有机物质和其他物质在摄氏零下196度或以下的低温保存的一种科技。一般来说,深低温保存是泛指
  • 东格陵兰洋流东格陵兰洋流(East Greenland Current)由源自北冰洋,带来冰冻、低盐度、往南的水流沿着东格陵兰岸边。东格陵兰洋流为形成近极地环流(gyre)的五条主要洋流之一,并提供北冰洋的冰冻
  • 诺维信诺维信(英语:Novozymes)是一家着力于生物技术的公司,总部位于丹麦。在2014年,诺维信在世界许多国家中雇有近6500名雇员,包括印度,中国,巴西,阿根廷,英国,美国,和加拿大等国。其股票的B类
  • 结构异构体结构异构,也称构造异构,是指由于化合物具有不同的原子连接顺序而产生的同分异构现象,与立体异构相对。存在结构异构的化合物互称结构异构体。它们又可分为碳链异构、位置异构和
  • 后转译修饰翻译后修饰(英语:Post-translational modification,缩写PTM;又称后翻译修饰)是指蛋白质在翻译后的化学修饰。对于大部分的蛋白质来说,这是蛋白质生物合成的较后步骤。PTM是细胞信
  • 塔拉瓦环礁塔拉瓦,是基里巴斯的一组环礁,英国殖民时期和吉尔伯特和埃利斯群岛的首都,当中南塔拉瓦是基里巴斯的首都。塔拉瓦环礁是以第二次世界大战的塔拉瓦战役而闻名。塔拉瓦环礁由24个
  • 孔令仪孔令仪(1915年9月19日-2008年8月22日),是宋嘉澍家族成员,在山西太谷出生,孔祥熙的长女,母亲是宋蔼龄。孔令仪的乳名叫Baby,英文名Rosamonde Ling E Kung Hwang,与二姨宋庆龄同名。192
  • 卧蚕卧蚕,又称眼苔、眼轮或卧蝉,即眼睛下方、紧邻睫毛下缘、微微隆起的部位,微笑时会更为明显,长大约4至7毫米,完美比例在眼睛的0.38-0.41倍左右。在面相学来说,有卧蚕的人易招桃花,一
  • VonageVonage(NYSE:VG,国际音标.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentiu