均差

✍ dations ◷ 2025-12-08 02:40:16 #微分学,数值分析

均差(Divided differences)是递归除法过程。在数值分析中,可用于计算牛顿多项式形式的多项式插值的系数。在微积分中,均差与导数一起合称差商,是对函数在一个区间内的平均变化率的测量。

均差也是一种算法,查尔斯·巴贝奇的差分机,是他在1822年发表的论文中提出的一种早期的机械计算机,在历史上意图用来计算对数表和三角函数表, 它设计在其运算中使用这个算法。

给定n+1个数据点

定义前向均差为:

定义后向均差为:

假定数据点给出为函数 ƒ,

其均差可以写为:

对函数 ƒ 在节点 0, ...,  上的均差还有其他表示法,如:

给定ν=0:

为了使涉及的递归过程更加清楚,以列表形式展示均差的计算过程:

用数学归纳法可证明:

此公式体现了均差的对称性质。故可推知:任意调换数据点次序,其值不变。

通过对换 n 阶均差中(x0,y0)与(xn-1,yn-1),可得到等价定义:

这个定义有着不同的计算次序:

以列表形式展示这个定义下均差的计算过程:

牛顿插值公式,得名于伊萨克·牛顿爵士,最早发表为他在1687年出版的《自然哲学的数学原理》中第三编“宇宙体系”的引理五,此前詹姆斯·格雷果里于1670年和牛顿于1676年已经分别独立得出这个成果。一般称其为连续泰勒展开的离散对应。

使用均差的牛顿插值法为:

可以在计算过程中任意增添节点如点(xn+1,yn+1),只需计算新增的n+1阶均差及其插值基函数,而无拉格朗日插值法需重算全部插值基函数之虞。

对均差采用展开形式:

以2阶均差牛顿插值为例:

当数据点呈等距分布的时候,这个特殊情况叫做“前向差分”。它们比计算一般的均差要容易。

给定n+1个数据点

有着

定义前向差分为:

前向差分所对应的均差为:

差分的展开形式是均差展开形式的特殊情况:

这里的表达式

是二项式系数,其中的(n)k是“下降阶乘幂”,空积(n)0被定义为1。

其对应的牛顿插值公式为:

牛顿在1665年得出并在1671年写的《流数法》中发表了ln(1+x)的无穷级数,在1666年得出了arcsin(x)和arctan(x)的无穷级数,在1669年的《分析学》中发表了sin(x)、cos(x)、arcsin(x)和ex的无穷级数;莱布尼茨在1673年大概也得出了sin(x)、cos(x)和arctan(x)的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa》中研讨了“有限差分”方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。

他对牛顿的均差的步长取趋于0的极限,得出:

使用普通函数记号表示幂运算, p n ( x ) = x n {\displaystyle p_{n}(x)=x^{n}} ,有:

此中n+1元m次齐次多项式的记法同于多项式定理。

泰勒级数和任何其他的函数级数,在原理上都可以用来逼近均差。将泰勒级数表示为:

均差的泰勒级数为:

n {\displaystyle n} 项消失了,因为均差的阶高于多项式的阶。可以得出均差的泰勒级数本质上开始于:

依据均差中值定理(英语:Mean value theorem (divided differences)),这也是均差的最简单逼近。

均差还可以表达为

这里的Bn-1是数据点x0,...,xn的n-1次B样条,而f(n)是函数f的n阶导数。这叫做均差的皮亚诺形式,而Bn-1是均差的皮亚诺核。

相关

  • 晕眩头晕(英语:Dizziness),是一种空间认知和稳定度的功能性障碍。头晕(dizziness)一词的定义较含糊不清,因为头晕可能是眩晕、晕厥前期(英语:presyncope) 、重心平衡障碍(英语:Balance disor
  • 欧登塞欧登塞(丹麦语:Odense 发音 帮助·信息)是丹麦第三大城市,南丹麦大区的首府,丹麦第二大岛菲英岛的第一大城。1970年之前归欧登塞省管辖,1970年到2006年底划归菲英省,2007年1月1日
  • 浮萍浮萍(学名:Lemna minor),别称青萍、水薸(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvet
  • 藩主藩是日本江户时代幕藩体制对于将军家直属领地以外大名领国的非正式称呼;这些领国源于日本古代封建体系,经过战国时代的兼并,于江户时代形成了276个地方分权单位,直到1871年明治
  • 天渊天渊,为中国明朝时期田斌的年号,1546年,前后共1年。
  • 周恩来政府管理学院南开大学周恩来政府管理学院,简称“政府学院”、“周政学院”,于2004年5月成立,位于南开大学津南校区,由南开大学政治学系、社会学系、行政管理系、社会工作与社会政策系、国际
  • 硝酸甘油 (药物)propyl] nitrate;硝酸甘油又被称作三硝基甘油酯,临床上可以用来治疗心脏衰竭、高血压,也被用来处理及预防心绞痛,这包括因心肌梗死、服用可卡因或其他原因造成的心脏供血不足产
  • 溴化乙锭溴化乙锭(缩写EtBr,EB)是一种核酸染料,常在琼脂糖凝胶电泳中用于核酸染色。在紫外光的照射下,未与核酸结合的溴化乙锭可被激发出橙红色萤光,在与DNA或双股RNA结合时,萤光强度会增强
  • 松平赖聪松平赖聪(1834年9月6日-1903年10月17日),讃岐高松藩第十一代(最后一代)藩主。松平赖聪在天保五年(1834年)出生,是第九代藩主松平赖恕第四子。其兄嫡子赖熙在弘化三年(1846年)逝世,故他在
  • 陈信之陈信之,字守益,福建福州连江人,明朝政治人物、进士。洪武四年(1371年),陈信之中辛亥科二甲第八名进士。任礼部主事。后晋升兵部员外郎。