约瑟夫问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。
人们站在一个等待被处决的圈子里。 计数从圆圈中的指定点开始,并沿指定方向围绕圆圈进行。 在跳过指定数量的人之后,处刑下一个人。 对剩下的人重复该过程,从下一个人开始,朝同一方向跳过相同数量的人,直到只剩下一个人,并被释放。
问题即,给定人数、起点、方向和要跳过的数字,选择初始圆圈中的位置以避免被处决。
这个问题是以弗拉维奥·约瑟夫命名的,他是1世纪的一名犹太历史学家。他在自己的日记中写道,他和他的40个战友被罗马军队包围在洞中。他们讨论是自杀还是被俘,最终决定自杀,并以抽签的方式决定谁杀掉谁。约瑟夫斯和另外一个人是最后两个留下的人。约瑟夫斯说服了那个人,他们将向罗马军队投降,不再自杀。约瑟夫斯把他的存活归因于运气或天意,他不知道是哪一个。
比较简单的做法是用循环单链表模拟整个过程,时间复杂度是O(n*m)。如果只是想求得最后剩下的人,则可以用数学推导的方式得出公式。且先看看模拟过程的解法。
# -*- coding: utf-8 -*- class Node(object): def __init__(self, value): self.value = value self.next = Nonedef create_linkList(n): head = Node(1) pre = head for i in range(2, n+1): newNode = Node(i) pre.next= newNode pre = newNode pre.next = head return headn = 5 #总的个数m = 2 #数的数目if m == 1: #如果是1的话,特殊处理,直接输出 print (n) else: head = create_linkList(n) pre = None cur = head while cur.next != cur: #终止条件是节点的下一个节点指向本身 for i in range(m-1): pre = cur cur = cur.next print (cur.value) pre.next = cur.next cur.next = None cur = pre.next print (cur.value)