在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。
拉格朗日在1797年之前,最先提出带有余项的现在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面上的开区间)上,与自身泰勒级数相等的函数称为解析函数。
在数学上,对于一个在实数或复数值间隔为单位步长1或一致但非单位量的情况,计算差分,前向差分的定义为:
牛顿前向差分插值公式为:
这成立于任何多项式函数和大多数但非全部解析函数。
牛顿在1665年得出并在1671年写的《流数法》中发表了的无穷级数,在1666年得出了和的无穷级数,在1669年的《分析学》中发表了、、和的无穷级数;莱布尼茨在1673年大概也得出了、和的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa 页面存档备份,存于互联网档案馆》中研讨了有限差分方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。
他对牛顿的均差分的步长取趋于的极限,得出: