角动量算符

✍ dations ◷ 2025-09-10 00:31:35 #角动量,物理算符

在量子力学里,角动量算符(英语:angular momentum operator)是一种算符,类比于经典的角动量。在原子物理学涉及旋转对称性(rotational symmetry)的理论里,角动量算符占有中心的角色。角动量,动量,与能量是物体运动的三个基本特性。

角动量促使在旋转方面的运动得以数量化。在孤立系统里,如同能量和动量,角动量是守恒的。在量子力学里,角动量算符的概念是必要的,因为角动量的计算实现于描述量子系统的波函数,而不是经典地实现于一点或一刚体。在量子尺寸世界,分析的对象都是以波函数或量子幅来描述其概率性行为,而不是命定性(deterministic)行为。

在经典力学里,角动量 L = ( L x ,   L y ,   L z ) {\displaystyle \mathbf {L} =(L_{x},\ L_{y},\ L_{z})\,\!} 定义为位置 r = ( x ,   y ,   z ) {\displaystyle \mathbf {r} =(x,\ y,\ z)\,\!} 与动量 p = ( p x ,   p y ,   p z ) {\displaystyle \mathbf {p} =(p_{x},\ p_{y},\ p_{z})\,\!} 的叉积:

在量子力学里,对应的角动量算符 L ^ {\displaystyle {\hat {\mathbf {L} }}\,\!} 定义为位置算符 r ^ {\displaystyle {\hat {\mathbf {r} }}\,\!} 与动量算符 p ^ {\displaystyle {\hat {\mathbf {p} }}\,\!} 的叉积:

由于动量算符的形式为

角动量算符的形式为

其中, {\displaystyle \nabla \,\!} 是梯度算符。

在量子力学里,每一个可观察量所对应的算符都是厄米算符。角动量是一个可观察量,所以,角动量算符应该也是厄米算符。让我们现在证明这一点,思考角动量算符的 x-分量 L ^ x {\displaystyle {\hat {L}}_{x}\,\!}

其伴随算符 L x {\displaystyle L_{x}^{\dagger }\,\!}

由于 y ^ {\displaystyle {\hat {y}}\,\!} z ^ {\displaystyle {\hat {z}}\,\!} p ^ y {\displaystyle {\hat {p}}_{y}\,\!} p ^ z {\displaystyle {\hat {p}}_{z}\,\!} ,都是厄米算符,

由于 p ^ z {\displaystyle {\hat {p}}_{z}\,\!} y ^ {\displaystyle {\hat {y}}\,\!} 之间、 p ^ y {\displaystyle {\hat {p}}_{y}\,\!} z ^ {\displaystyle {\hat {z}}\,\!} 之间分别相互对易,所以,

因此, L ^ x {\displaystyle {\hat {L}}_{x}\,\!} 是一个厄米算符。类似地, L ^ y {\displaystyle {\hat {L}}_{y}\,\!} L ^ z {\displaystyle {\hat {L}}_{z}\,\!} 都是厄米算符。总结,角动量算符是厄米算符。

再思考 L ^ 2 {\displaystyle {\hat {L}}^{2}\,\!} 算符,

其伴随算符 ( L ^ 2 ) {\displaystyle ({\hat {L}}^{2})^{\dagger }\,\!}

由于 L ^ x 2 {\displaystyle {\hat {L}}_{x}^{2}\,\!} 算符、 L ^ y 2 {\displaystyle {\hat {L}}_{y}^{2}\,\!} 算符、 L ^ z 2 {\displaystyle {\hat {L}}_{z}^{2}\,\!} 算符,都是厄米算符,

所以, L ^ 2 {\displaystyle {\hat {L}}^{2}\,\!} 算符是厄米算符。

两个算符 A ^ {\displaystyle {\hat {A}}\,\!} B ^ {\displaystyle {\hat {B}}\,\!} 的交换算符 {\displaystyle \,\!} ,表示出它们之间的对易关系。

思考 L ^ x {\displaystyle {\hat {L}}_{x}\,\!} L ^ y {\displaystyle {\hat {L}}_{y}\,\!} 的交换算符,

由于两者的对易关系不等于 0 , L x {\displaystyle L_{x}\,\!} L y {\displaystyle L_{y}\,\!} 彼此是不相容可观察量。 L ^ x {\displaystyle {\hat {L}}_{x}\,\!} L ^ y {\displaystyle {\hat {L}}_{y}\,\!} 绝对不会有共同的基底量子态。一般而言, L ^ x {\displaystyle {\hat {L}}_{x}\,\!} 的本征态与 L ^ y {\displaystyle {\hat {L}}_{y}\,\!} 的本征态不同。

给予一个量子系统,量子态为 | ψ {\displaystyle |\psi \rangle \,\!} 。对于可观察量算符 L ^ x {\displaystyle {\hat {L}}_{x}\,\!} ,所有本征值为 x i {\displaystyle \ell _{xi}\,\!} 的本征态 | f i , i = 1 ,   2 ,   3 ,   {\displaystyle |f_{i}\rangle ,\quad i=1,\ 2,\ 3,\ \cdots \,\!} ,形成了一组基底量子态。量子态 | ψ {\displaystyle |\psi \rangle \,\!} 可以表达为这基底量子态的线性组合: | ψ = i   | f i f i | ψ {\displaystyle |\psi \rangle =\sum _{i}\ |f_{i}\rangle \langle f_{i}|\psi \rangle \,\!} 。对于可观察量算符 L ^ y {\displaystyle {\hat {L}}_{y}\,\!} ,所有本征值为 y i {\displaystyle \ell _{yi}\,\!} 的本征态 | g i , i = 1 ,   2 ,   3 ,   {\displaystyle |g_{i}\rangle ,\quad i=1,\ 2,\ 3,\ \cdots \,\!} ,形成了另外一组基底量子态。量子态 | ψ {\displaystyle |\psi \rangle \,\!} 可以表达为这基底量子态的线性组合: | ψ = i   | g i g i | ψ {\displaystyle |\psi \rangle =\sum _{i}\ |g_{i}\rangle \langle g_{i}|\psi \rangle \,\!}

根据哥本哈根诠释,量子测量可以用量子态坍缩机制来诠释。假若,我们测量可观察量 L x {\displaystyle L_{x}\,\!} ,得到的测量值为其本征值 x i {\displaystyle \ell _{xi}\,\!} ,则量子态概率地坍缩为本征态 | f i {\displaystyle |f_{i}\rangle \,\!} 。假若,我们立刻再测量可观察量 L x {\displaystyle L_{x}\,\!} ,得到的答案必定是 x i {\displaystyle \ell _{xi}\,\!} ,量子态仍旧处于 | f i {\displaystyle |f_{i}\rangle \,\!} 。可是,假若,我们改为测量可观察量 L y {\displaystyle L_{y}\,\!} ,则量子态不会停留于本征态 | f i {\displaystyle |f_{i}\rangle \,\!} ,而会坍缩为 L ^ y {\displaystyle {\hat {L}}_{y}\,\!} 的本征态。假若,得到的测量值为其本征值 y j {\displaystyle \ell _{yj}\,\!} ,则量子态概率地坍缩为本征态 | g j {\displaystyle |g_{j}\rangle \,\!}

根据不确定性原理,

L x {\displaystyle L_{x}\,\!}

相关

  • 库特伯·迪·息拉辛库特布丁·设拉子(Qutb al-Din Shirazi)(1236年-1311年2月7日)是13世纪波斯学者,对伊斯兰科学和哲学多有贡献。出生于设拉子,其父亲为名医和苏菲派长老,自幼从父学医,曾专研伊本·西
  • 三氧化氮三氧化氮是一种不稳定的氮氧化物,化学式为NO3。它是五氧化二氮气相分解的中间产物:该物质存在时间很短,但吸收光谱能检测到它的存在。实验证明它具有顺磁性。它还与五氧化二氮
  • C·格兰特·威尔森卡尔顿·格兰特·威尔森(英语:Carlton Grant Willson,1939年5月30日-),美国化学家。1962年获加州大学伯克利分校化学学士学位,1969年获加州大学圣地亚哥分校有机化学硕士学位。1962
  • 2014年高雄气爆事件2014年高雄气爆事故是2014年7月31日23时55分以后至8月1日凌晨间,发生在台湾高雄市前镇区与苓雅区的多起石化气爆炸事件。7月31日约21时,民众通报疑似有瓦斯泄漏。几个小时后该
  • 天皇日本天皇列表历代天皇列表列举出自第1代神武天皇至第126代今上天皇(德仁)期间的126代天皇名单,其中第35代皇极天皇与第37代齐明天皇是同一人、第46代孝谦天皇和第48代称德天皇
  • 桥连城1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。茹安维尔勒蓬(法语:Joinville-le-Pont,意为桥连城)是法国巴黎东南近郊城市,人口一万七千多人,
  • 高志华高志华(英语:Reginald Heber Goldsworthy,1895年-1938年3月6日),英国循道公会在华传教士。高志华出生于布里斯托尔的一个牧师家庭。他在与著名传教士柏格理的一次会面后受到鼓舞,成
  • 阮辉阮辉�(越南语:Nguyễn Huy Oánh/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","M
  • 阴谋与爱情《阴谋与爱情》(德语:Kabale und Liebe),是1784年弗里德里希·席勒的重要戏剧作品。五幕话剧,直接取材于德国现实。这个剧本以现实主义的手法反映了当时市民阶级和封建贵族之间的
  • 岩田刚典岩田 刚典(1989年3月6日 - )是日本的舞者、演员。三代目J Soul Brothers、EXILE的表演者。爱知县名古屋市出身。经初中考试,进入庆应义塾普通部。再经历庆应义塾高级中学,然后庆