商空间 (线性代数)

✍ dations ◷ 2025-11-25 00:05:54 #线性代数,泛函分析

在线性代数中,一个向量空间关于子空间的商是将“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作/(读作:模)。

正式地,此构造如下(Halmos 1974,§21-22)。设是域上的一个向量空间,且是的一个子空间。我们定义在上定义一个等价类~,如果 − ∈ 则令 ~ 。即如果其中一个加上中一个元素得到另一个,则与相关。的所在等价类通常记作

因为它由

那么商空间/定义为/~,在~下所有等价类集合。等价类上的数乘与加法定义为

不难验证这些运算是良定义的(即与代表元之选取无关)。这些运算将商空间/转化为上一个向量空间,成为零类。相对应的,商映射即定义为 ∈ 与等价类之映射

令 = R2为标准笛卡儿平面,是中过原点的一条直线。则商空间/可与中与平行的所有直线等价。这就是讲,集合/的元素是中平行于的元素。这给出了以一种几何的方式看商空间的方法。

另一个例子是R被前个标准基向量张成的子空间的商。空间R由所有实数-元组 (1,…,)组成。子空间,与R等价,由只有前元素是非零 (1,…,,0,0,…,0)的所有-元组组成。R的两个向量在模去这个子空间的同一个共轭类中当且仅当他们的后 − 个坐标相等。商空间R/ R显然地同构于R−。

更一般地,如果写成子空间与的一个(内部)直和:

则商空间/自然同构于 (Halmos 1974,Theorem 22.1)。

如果是的一个子空间,在中的余维数定义为/的维数。如果是有限维的,这就是与的维数之差(Halmos 1974,Theorem 22.2):

从到商空间/有一个自然满射,将映到它的等价类。这个满射的核(或零空间)是子空间。此关系简单地总结为短正合序列

令 : → 是一个线性算子。的核,记作ker(),是所有 ∈ 使得 = 0的集合。核是的一个子空间。线性代数第一同构定理说商空间/ker()同构于在中的像。一个直接推论,对有限维空间的秩-零化度定理:的维数等于核的维数(的零化度)加上像的维数(的秩)。

线性算子 : → 的余核定义为商空间/im()。

如果是一个巴拿赫空间而是的一个闭子空间,则商/仍是一个巴拿赫空间。上一节已经给出商空间一个向量空间结构。我们定义/上一个范数为

商空间/关于此范数是完备的,所以是一个巴拿赫空间。

令表示区间上连续实值函数的巴拿赫空间。记所有函数 ∈ 使得(0) = 0的子空间为。则某个函数的等价类由它在0点的值决定,商空间/同构于R。

如果是一个希尔伯特空间,则商空间/同构于的正交补。

局部凸空间被一个闭子空间商还是局部凸的(Dieudonné 1970,12.14.8)。事实上,假设是局部凸的所以上的拓扑由一族半范数{α|α∈}生成,这里是一个指标集。设是一个闭子空间,定义/上半范数α

则/是一个局部凸空间,上面的拓扑是商拓扑。

进一步,若是可度量化的,则 /也是;如果是弗雷歇空间,/(Dieudonné 1970,12.11.3)也是。

相关

  • 催眠催眠术(Mesmerism or Hypnotism)最早出现于18世纪中叶的奥地利,弗朗茨·梅斯梅尔(Franz Anton Mesmer 1734-1815)将其理论化和系统化, 然后以他的名字定名催眠术为Mesmerism,后来
  • 丘脑丘脑(英文:thalamus)是间脑的一个主要解剖结构。本条目主要着眼于人类丘脑,和其他非人类的灵长目动物及其它动物可能有细微的差别。人类的丘脑基本上是两个球形的结构,各长约5
  • 多孔动物多孔动物门(学名:Porifera)为原始的多细胞生物,也称海绵动物门(Spongiatia或Spongia),一般称为海绵。海绵没有神经元/神经系统、消化和循环系统,相反,它们大多依靠海水流过自己的身体
  • 直立性低血压姿位性低血压(英语:Postural hypotension),又称姿势性低血压、姿态性低血压、直立性低血压或体位性低血压(Orthostatic hypotension,或简称 Orthostasis)。主要指患者在站姿时血压
  • 狻猊座像狻猊,一种中国神话中的生物。狻猊是类似麒麟一样的神兽,龙生九子,狻猊便是其中之一,狻猊形象如狮子,喜烟好坐,所以形像一般出现在香炉上,随之吞烟吐雾。因其好坐,亦作座狮。后来狻猊
  • 加色法加色法是描述那些由不同颜色的光混合形成新颜色的情形。这是对比光线从各部分的可见光谱创建颜色的减色;电脑显示器和电视是加色法最常见的形式,而在油漆、颜料和彩色滤光片会
  • 卤化金卤化金是金和卤素形成的化合物。一氯化金(AuCl)、一溴化金(AuBr)和一碘化金(AuI)都是具有交替链状结构…-X-Au-X-Au-X-Au-X-…的晶体,其X-Au-X键角小于180°。单分子的AuF在气相中
  • 幕府幕府(日语:幕府/ばくふ bakufu */?)是指日本历史上由征夷大将军(俗称幕府将军,简称将军)领导与统治的武家政权,为日本特有国情下所产生的的政治体制,从1185年源平合战结束时开始,至1
  • 天堂陌影《天堂陌影》是1984年的一部美国荒诞喜剧电影。由吉姆·贾木许编剧及导演,前爵士乐手约翰·卢瑞尔、理查德·埃德森、匈牙利裔演员艾斯特·巴林特主演。该片在美国独立电影史
  • 河池市河池市(壮文:Hozciz),旧称宜州、庆远,是中华人民共和国广西壮族自治区下辖的地级市,位于广西北部。市境东接柳州市,东南界来宾市,南邻南宁市,西毗百色市,北与贵州省黔南州、黔东南州相