商空间 (线性代数)

✍ dations ◷ 2025-08-29 20:05:20 #线性代数,泛函分析

在线性代数中,一个向量空间关于子空间的商是将“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作/(读作:模)。

正式地,此构造如下(Halmos 1974,§21-22)。设是域上的一个向量空间,且是的一个子空间。我们定义在上定义一个等价类~,如果 − ∈ 则令 ~ 。即如果其中一个加上中一个元素得到另一个,则与相关。的所在等价类通常记作

因为它由

那么商空间/定义为/~,在~下所有等价类集合。等价类上的数乘与加法定义为

不难验证这些运算是良定义的(即与代表元之选取无关)。这些运算将商空间/转化为上一个向量空间,成为零类。相对应的,商映射即定义为 ∈ 与等价类之映射

令 = R2为标准笛卡儿平面,是中过原点的一条直线。则商空间/可与中与平行的所有直线等价。这就是讲,集合/的元素是中平行于的元素。这给出了以一种几何的方式看商空间的方法。

另一个例子是R被前个标准基向量张成的子空间的商。空间R由所有实数-元组 (1,…,)组成。子空间,与R等价,由只有前元素是非零 (1,…,,0,0,…,0)的所有-元组组成。R的两个向量在模去这个子空间的同一个共轭类中当且仅当他们的后 − 个坐标相等。商空间R/ R显然地同构于R−。

更一般地,如果写成子空间与的一个(内部)直和:

则商空间/自然同构于 (Halmos 1974,Theorem 22.1)。

如果是的一个子空间,在中的余维数定义为/的维数。如果是有限维的,这就是与的维数之差(Halmos 1974,Theorem 22.2):

从到商空间/有一个自然满射,将映到它的等价类。这个满射的核(或零空间)是子空间。此关系简单地总结为短正合序列

令 : → 是一个线性算子。的核,记作ker(),是所有 ∈ 使得 = 0的集合。核是的一个子空间。线性代数第一同构定理说商空间/ker()同构于在中的像。一个直接推论,对有限维空间的秩-零化度定理:的维数等于核的维数(的零化度)加上像的维数(的秩)。

线性算子 : → 的余核定义为商空间/im()。

如果是一个巴拿赫空间而是的一个闭子空间,则商/仍是一个巴拿赫空间。上一节已经给出商空间一个向量空间结构。我们定义/上一个范数为

商空间/关于此范数是完备的,所以是一个巴拿赫空间。

令表示区间上连续实值函数的巴拿赫空间。记所有函数 ∈ 使得(0) = 0的子空间为。则某个函数的等价类由它在0点的值决定,商空间/同构于R。

如果是一个希尔伯特空间,则商空间/同构于的正交补。

局部凸空间被一个闭子空间商还是局部凸的(Dieudonné 1970,12.14.8)。事实上,假设是局部凸的所以上的拓扑由一族半范数{α|α∈}生成,这里是一个指标集。设是一个闭子空间,定义/上半范数α

则/是一个局部凸空间,上面的拓扑是商拓扑。

进一步,若是可度量化的,则 /也是;如果是弗雷歇空间,/(Dieudonné 1970,12.11.3)也是。

相关

  • 氨基胺类(英语:amine)是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物,简称“胺”。不建议将“胺”(amine)写成“氨”(ammonia),两者意义与英文名称不同。氨基(-NH2、-NHR、-NR2)是胺的官
  • 洛林洛林(法语:Lorraine;德语:Lothringen)是法国东北部的一个旧大区,北邻比利时、卢森堡及德国。面积23,547km²,人口2,310,376。下辖默尔特-摩泽尔省(54)、默兹省(55)、摩泽尔省(57)、孚日省
  • 先天性无阴道先天性无阴道(英语:Congenital Absence of Vagina),是双侧副中肾管发育不全或双侧副中肾管尾端发育不良所致的一种先天性异常。常合并有先天性无子宫或仅有痕迹子宫,偶也有发育正
  • 小门门(英文:Phylum),动物界的门(植物界的门(英语:Division (biology))为Division)是生物分类法中的一级,位于界和纲之间,有时在门下也分亚门。目前动物界拥有35个门,植物界则拥有16个门。真
  • 台湾八景台湾八景,指的是台湾的八大景色,随着时代而有所变迁。在清代,1696年(清康熙35年)的《台湾府志》中,就有台湾八景的描述。那时选出来的八景分别是:由于当时台湾已开发的地方不多,因此
  • 熊 毅熊毅(1910年3月10日-1985年1月24日),字其毅,贵州贵阳人,中国土壤学家。被称为中国土壤胶体化学和土壤矿物学的奠基人,土壤发生和土壤资源研究、水稻土和土壤肥力研究、土壤生态和环
  • 帕勒马希姆帕勒马希姆(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
  • 壬午事変“壬午兵变”,又名“壬午军乱”,日本称之为“壬午事变”、“朝鲜事变”,是发生在1882年朝鲜王朝的一次政变。云岘君(兴宣大院君)发动兵变,掌握政权,然而不久之后即被清朝朝鲜事务大
  • 欧洲组织欧洲政党(英语:European political party) 是运行于欧洲各国和欧洲联盟机构内部的一种政党组织。它们受欧盟法律监督并得到欧盟的拨款作为活动经费。它们往往由各国政党共同创
  • CD4受体1CDH, 1CDI, 1CDJ, 1CDU, 1CDY, 1G9M, 1G9N, 1GC1, 1JL4, 1Q68, 1RZJ, 1RZK, 1WBR, 1WIO, 1WIP, 1WIQ, 2B4C, 2JKR, 2JKT, 2KLU, 2NXY, 2NXZ, 2NY0, 2NY1, 2NY2, 2NY3, 2NY4