商空间 (线性代数)

✍ dations ◷ 2025-10-14 20:38:17 #线性代数,泛函分析

在线性代数中,一个向量空间关于子空间的商是将“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作/(读作:模)。

正式地,此构造如下(Halmos 1974,§21-22)。设是域上的一个向量空间,且是的一个子空间。我们定义在上定义一个等价类~,如果 − ∈ 则令 ~ 。即如果其中一个加上中一个元素得到另一个,则与相关。的所在等价类通常记作

因为它由

那么商空间/定义为/~,在~下所有等价类集合。等价类上的数乘与加法定义为

不难验证这些运算是良定义的(即与代表元之选取无关)。这些运算将商空间/转化为上一个向量空间,成为零类。相对应的,商映射即定义为 ∈ 与等价类之映射

令 = R2为标准笛卡儿平面,是中过原点的一条直线。则商空间/可与中与平行的所有直线等价。这就是讲,集合/的元素是中平行于的元素。这给出了以一种几何的方式看商空间的方法。

另一个例子是R被前个标准基向量张成的子空间的商。空间R由所有实数-元组 (1,…,)组成。子空间,与R等价,由只有前元素是非零 (1,…,,0,0,…,0)的所有-元组组成。R的两个向量在模去这个子空间的同一个共轭类中当且仅当他们的后 − 个坐标相等。商空间R/ R显然地同构于R−。

更一般地,如果写成子空间与的一个(内部)直和:

则商空间/自然同构于 (Halmos 1974,Theorem 22.1)。

如果是的一个子空间,在中的余维数定义为/的维数。如果是有限维的,这就是与的维数之差(Halmos 1974,Theorem 22.2):

从到商空间/有一个自然满射,将映到它的等价类。这个满射的核(或零空间)是子空间。此关系简单地总结为短正合序列

令 : → 是一个线性算子。的核,记作ker(),是所有 ∈ 使得 = 0的集合。核是的一个子空间。线性代数第一同构定理说商空间/ker()同构于在中的像。一个直接推论,对有限维空间的秩-零化度定理:的维数等于核的维数(的零化度)加上像的维数(的秩)。

线性算子 : → 的余核定义为商空间/im()。

如果是一个巴拿赫空间而是的一个闭子空间,则商/仍是一个巴拿赫空间。上一节已经给出商空间一个向量空间结构。我们定义/上一个范数为

商空间/关于此范数是完备的,所以是一个巴拿赫空间。

令表示区间上连续实值函数的巴拿赫空间。记所有函数 ∈ 使得(0) = 0的子空间为。则某个函数的等价类由它在0点的值决定,商空间/同构于R。

如果是一个希尔伯特空间,则商空间/同构于的正交补。

局部凸空间被一个闭子空间商还是局部凸的(Dieudonné 1970,12.14.8)。事实上,假设是局部凸的所以上的拓扑由一族半范数{α|α∈}生成,这里是一个指标集。设是一个闭子空间,定义/上半范数α

则/是一个局部凸空间,上面的拓扑是商拓扑。

进一步,若是可度量化的,则 /也是;如果是弗雷歇空间,/(Dieudonné 1970,12.11.3)也是。

相关

  • 10国际疾病伤害及死因分类标准第十版(英语:The International Statistical Classification of Diseases and Related Health Problems 10th Revision,ICD-10)是世界卫生组织依据疾
  • 生物累积性生物累积(英语:Bioaccumulation)是指生物食用或体表吸收生活环境中的某些化学物质,这些物质没办法被代谢,便累积于生物体内,经由食物链中各阶层消费者的食性关系而累积,越高级消费
  • 硫酸孕烯醇酮硫酸孕烯醇酮(英语:Pregnenolone sulfate,缩写PREG-S、PREGS,也可称为孕-5-烯-3β-硫酸酯-20-酮,pregn-5-en-3β-ol-20-one 3β-sulfate)是一种内源性的神经甾体,合成自孕烯醇酮,常
  • Johnson-Corey-Chaykovsky反应Johnson–Corey–Chaykovsky反应(Johnson–Corey–Chaykovsky reaction),有时简称为Corey–Chaykovsky反应或缩写成CCR,是一个用来合成如环氧化合物、氮杂环丙烷和环丙烷这类含
  • 环鸟苷酸腺苷环磷酸鸟苷(cGMP或cyclic GMP或3'-5'-cyclic guanosine monophosphate),跟环磷酸腺苷(cAMP)一样,是一种具有细胞内信息传递作用的第二信使(second messengers),但两者的生物效应却恰
  • 凯瑟琳·泽塔-琼斯凯瑟琳·泽塔-琼斯,CBE(英语:Catherine Zeta-Jones,1969年9月25日-)是一位英国女演员。她曾获得几项荣誉,包括奥斯卡金像奖、英国电影学院奖、东尼奖,及于2010年被授勋大英帝国勋章(C
  • 光宇维思光宇维思,全名为北京光宇维思科技有限公司,是中国大陆一家游戏公司,于2004年成立,于2008年倒闭。2004年,光宇集团投资、韩国人吴东锡在中国大陆创立光宇维思。该公司是由北京市石
  • 迈克·格拉韦尔莫里斯·罗伯特·“迈克”·格拉韦尔(Maurice Robert "Mike" Gravel,1930年5月13日-)生于马萨诸塞州斯普林菲尔德,美国房地产商、作家、政治人物,美国民主党籍,美国参议院前议员,曾
  • 韩国炸鸡 (양념치킨)韩式炸鸡(韩语:(양념)치킨,又称“韩国炸鸡”,韩语中亦常简称为치킨)是一种韩国风味的炸鸡,既可以是快餐店、餐厅和酒吧的主菜,也可以被当做零食。韩式炸鸡口味很多,有原味、香辣酱料
  • 夊部夊部,为汉字索引里为部首之一,康熙字典214个部首中的第三十五个(三划的则为第六个)。夊部通常是从下方为部字,且无其他部首可用者将部首归为夊部。要注意的是,在繁体,夊部与夂部不