刘维尔定理 (微分代数)

✍ dations ◷ 2025-09-19 12:57:57 #域论,微分代数,微分方程,代数定理

刘维尔定理揭示了具有初等原函数的初等函数的本质特征。其最早由约瑟夫·刘维尔于十九世纪三四十年代提出,经后人推广到一般的微分域上,并被进一步推广运用在常微分方程组初等首次积分的研究上。

初等函数的原函数并不总是初等函数,例如 e x 2 {\displaystyle e^{-x^{2}}} 。若对于 f , g F {\displaystyle \forall f,g\in F} 是 的微分域扩张 K = F ( h ) {\displaystyle K=F(h)} 是指接连进行如上的扩张得到的微分域 F ( h 1 , . . . , h n ) {\displaystyle F(h_{1},...,h_{n})} ,其中 h j {\displaystyle h_{j}} F ( h 1 , . . . , h j 1 ) {\displaystyle F(h_{1},...,h_{j-1})} 上基本初等。


一个函数 f ( x ) {\displaystyle f(x)} 称为初等函数 若它在微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数加普通导数)的某个初等扩张中。

以下为刘维尔第一定理(Theorem of Liouville-first statement)。

F {\displaystyle F} 为微分域, K {\displaystyle K} F {\displaystyle F} 的初等扩张,且 C o n ( K , δ ) = C o n ( F , δ ) {\displaystyle \mathrm {Con} (K,\delta )=\mathrm {Con} (F,\delta )} ,对于 f F {\displaystyle f\in F} ,存在 g K {\displaystyle g\in K} , 使得 δ g = f {\displaystyle \delta g=f} ,则

其中 c 1 , . . . , c n C o n ( F , δ ) {\displaystyle c_{1},...,c_{n}\in \mathrm {Con} (F,\delta )} , u 1 , . . . , u n , v F {\displaystyle u_{1},...,u_{n},v\in F}

以下为刘维尔第二定理(Theorem of Liouville-second statement),又称强刘维尔定理(Strong Liouville theorem)。

F {\displaystyle F} 为微分域, B = C o n ( F , δ ) {\displaystyle B=\mathrm {Con} (F,\delta )} ,若 g {\displaystyle g} F {\displaystyle F} 上初等,且满足 δ g = f F {\displaystyle \delta g=f\in F} ,则

其中 c 1 , . . . , c n B ¯ {\displaystyle c_{1},...,c_{n}\in {\bar {B}}} v F {\displaystyle v\in F} , u 1 , . . . , u n , v B ¯ F {\displaystyle u_{1},...,u_{n},v\in {\bar {B}}F} B ¯ {\displaystyle {\bar {B}}} B {\displaystyle B} 的代数闭域.每个 F {\displaystyle F} B ¯ F {\displaystyle {\bar {B}}F} 的自同构交换求和的顺序。

例如复数域上的有理函数域 C ( x ) {\displaystyle \mathbb {C} (x)} 与通常的导数即构成了一个微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数的导数仍是有理函数),该微分域的常数集即是复数集 C {\displaystyle \mathbb {C} }

函数 1 / x C ( x ) {\displaystyle 1/x\in \mathbb {C} (x)} 的原函数 ln ( x ) + C {\displaystyle \ln(x)+C} 不属于微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} ,但具有如定理所述的对数形式(注意 x , C C ( x ) , 1 C {\displaystyle x,C\in \mathbb {C} (x),1\in \mathbb {C} } )。


类似的, 1 / ( x 2 + 1 ) C ( x ) {\displaystyle 1/(x^{2}+1)\in \mathbb {C} (x)} ,其原函数反正切函数可以表达成对数的形式

显然也有 C , 1 + i x 1 i x C ( x ) , i 2 C {\displaystyle C,{\frac {1+ix}{1-ix}}\in \mathbb {C} (x),-{\frac {i}{2}}\in \mathbb {C} }

下面考虑 f ( x ) = 1 / ( x ln ( x ) ) {\displaystyle f(x)=1/(x\ln(x))} 的原函数,显然这不属于 C ( x ) {\displaystyle \mathbb {C} (x)} ln ( x ) {\displaystyle \ln(x)} C ( x ) {\displaystyle \mathbb {C} (x)} 上的超越函数)。把 ln ( x ) {\displaystyle \ln(x)} 添加到 C ( x ) {\displaystyle \mathbb {C} (x)} ,形成更大的微分域 ( F , d / d x ) , F = C ( x ) ( ln ( x ) ) {\displaystyle (F,\mathrm {d} /\mathrm {d} x),F=\mathbb {C} (x)(\ln(x))} (于是 f F {\displaystyle f\in F} )。 f ( x ) {\displaystyle f(x)} 的一个原函数是 ln ( ln ( x ) ) {\displaystyle \ln(\ln(x))} ,于是我们再次看到,使用包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} 里的函数的对数,表达出了 f ( x ) {\displaystyle f(x)} 的原函数。

事实上,Risch 1969 年的论文表明,对于任意复杂的初等函数,总可以找到适当的包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} ,以及从 C ( x ) {\displaystyle \mathbb {C} (x)} 开始的初等域扩张塔 C ( x , x 1 , . . . , x n ) = F {\displaystyle \mathbb {C} (x,x_{1},...,x_{n})=F} 。并在此扩张塔的基础上,基于刘维尔定理找到其初等原函数,或证明不存在这样的初等原函数(参见 Risch算法)。

设想我们想知道形如 f ( x ) e g ( x ) , f ( x ) , g ( x ) C ( x ) {\displaystyle f(x)e^{g(x)},f(x),g(x)\in \mathbb {C} (x)} 的函数是否有初等原函数。由刘维尔定理可以得到,这等价于判断是否存在 a ( x ) C ( x ) {\displaystyle a(x)\in \mathbb {C} (x)} 使得

若存在这样的 a ( x ) {\displaystyle a(x)} ,那么其原函数即为 a ( x ) e g ( x ) {\displaystyle a(x)e^{g(x)}}

例如对于 e x 2 {\displaystyle e^{x^{2}}} ,(即 f ( x ) = 1 , g ( x ) = x 2 {\displaystyle f(x)=1,g(x)=x^{2}} ),应有

如果存在这样的 a ( x ) {\displaystyle a(x)} ,那么一定可以作部分分式展开:

其中 p ( x ) C {\displaystyle p(x)\in \mathbb {C} } C {\displaystyle \mathbb {C} } 上的多项式, r j C {\displaystyle r_{j}\in \mathbb {C} } a ( x ) {\displaystyle a(x)} 分母多项式的根,系数 A j k C {\displaystyle A_{jk}\in \mathbb {C} } 被唯一确定。代入前式即可证明这样的 a ( x ) {\displaystyle a(x)} 不存在(因为 2 x a ( x ) {\displaystyle 2x\cdot a(x)} 会增加多项式的次数,故对照左端项应有 p ( x ) = 0 {\displaystyle p(x)=0} ,而对 1 / ( x r j ) k {\displaystyle 1/(x-r_{j})^{k}} 求导会增加分母的次数,对照左端项得到这一部分也应该是 0,这样就得到矛盾 1=0)。从而函数 e x 2 {\displaystyle e^{x^{2}}} 不存在初等原函数。

借助完全类似的方法,我们可以证明 e x / x {\displaystyle e^{x}/x} (对应 1 / x = a + a {\displaystyle 1/x=a'+a} ),以及 sin ( x ) / x {\displaystyle \sin(x)/x} 也不存在初等原函数. 更进一步,对 e x / x {\displaystyle e^{x}/x} 换元可以得到 e e

相关

  • 先天畸形先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 沃拉大屠杀沃拉大屠杀( Rzeź Woli)是发生于波兰首都华沙沃拉,纳粹德国军队于1944年在华沙起义期间有系统地杀害大约40,000-50,000人。1944年8月5日至12日之间,数以万计的波兰平民与地下军
  • 923
  • 甲基多巴甲基多巴(英语:Methyldopa),也作α-甲基多巴,商品名亦称爱道美等,是一种治疗高血压的药物。多用于妊娠高血压病(英语:high blood pressure in pregnancy)、高血压急症(英语:Hypertensiv
  • 奥地利的鲁道夫奥地利的鲁道夫·约翰·约瑟夫·莱纳(德语:Rudolph Johann Joseph Rainer von Österreich,1788年1月8日-1831年7月24日),奥洛穆茨大主教,神圣罗马皇帝利奥波德二世的幼子。鲁道夫
  • 卢卡什·古尔尼茨基卢卡什·古尔尼茨基(波兰语:Łukasz Górnicki,1527年-1603年),文艺复兴时期欧洲波兰随笔作家。他曾在意大利接受教育。他最重要的著作是《波兰廷臣》(1566年出版),该书是对卡斯蒂利
  • 齐特琴齐特琴(德语:Zither)是一种既是指弦乐器中一个类别的乐器,已同时该类别某些特定乐器的名称。德语的本名字源来自拉丁词语 ,跟现代英语吉他()同源。结构演化自中世纪拨弦乐瑟(psalter
  • 李忠 (数学家)李忠(1936年8月-),男,河北河间人,中国数学家,主要研究复分析。1960年毕业于北京大学数学力学系,随即留校任教。1979年至1981年间,他在瑞士苏黎世大学数学研究所访学。李忠1980年升为
  • 裴俊 (越南)裴俊(越南语:Bùi Tuấn/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","Ming-Lt-
  • 弩温答失里弩温答失里,明朝哈密国忠顺王卜答失里之妻。瓦剌脱欢的女儿,也先的姐姐。其子倒瓦答失里、卜列革相继为王。天顺四年(1460年)卜列革死后,她亲自主政。多次派使者朝贡明朝,成化初年