刘维尔定理 (微分代数)

✍ dations ◷ 2025-06-09 08:01:52 #域论,微分代数,微分方程,代数定理

刘维尔定理揭示了具有初等原函数的初等函数的本质特征。其最早由约瑟夫·刘维尔于十九世纪三四十年代提出,经后人推广到一般的微分域上,并被进一步推广运用在常微分方程组初等首次积分的研究上。

初等函数的原函数并不总是初等函数,例如 e x 2 {\displaystyle e^{-x^{2}}} 。若对于 f , g F {\displaystyle \forall f,g\in F} 是 的微分域扩张 K = F ( h ) {\displaystyle K=F(h)} 是指接连进行如上的扩张得到的微分域 F ( h 1 , . . . , h n ) {\displaystyle F(h_{1},...,h_{n})} ,其中 h j {\displaystyle h_{j}} F ( h 1 , . . . , h j 1 ) {\displaystyle F(h_{1},...,h_{j-1})} 上基本初等。


一个函数 f ( x ) {\displaystyle f(x)} 称为初等函数 若它在微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数加普通导数)的某个初等扩张中。

以下为刘维尔第一定理(Theorem of Liouville-first statement)。

F {\displaystyle F} 为微分域, K {\displaystyle K} F {\displaystyle F} 的初等扩张,且 C o n ( K , δ ) = C o n ( F , δ ) {\displaystyle \mathrm {Con} (K,\delta )=\mathrm {Con} (F,\delta )} ,对于 f F {\displaystyle f\in F} ,存在 g K {\displaystyle g\in K} , 使得 δ g = f {\displaystyle \delta g=f} ,则

其中 c 1 , . . . , c n C o n ( F , δ ) {\displaystyle c_{1},...,c_{n}\in \mathrm {Con} (F,\delta )} , u 1 , . . . , u n , v F {\displaystyle u_{1},...,u_{n},v\in F}

以下为刘维尔第二定理(Theorem of Liouville-second statement),又称强刘维尔定理(Strong Liouville theorem)。

F {\displaystyle F} 为微分域, B = C o n ( F , δ ) {\displaystyle B=\mathrm {Con} (F,\delta )} ,若 g {\displaystyle g} F {\displaystyle F} 上初等,且满足 δ g = f F {\displaystyle \delta g=f\in F} ,则

其中 c 1 , . . . , c n B ¯ {\displaystyle c_{1},...,c_{n}\in {\bar {B}}} v F {\displaystyle v\in F} , u 1 , . . . , u n , v B ¯ F {\displaystyle u_{1},...,u_{n},v\in {\bar {B}}F} B ¯ {\displaystyle {\bar {B}}} B {\displaystyle B} 的代数闭域.每个 F {\displaystyle F} B ¯ F {\displaystyle {\bar {B}}F} 的自同构交换求和的顺序。

例如复数域上的有理函数域 C ( x ) {\displaystyle \mathbb {C} (x)} 与通常的导数即构成了一个微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数的导数仍是有理函数),该微分域的常数集即是复数集 C {\displaystyle \mathbb {C} }

函数 1 / x C ( x ) {\displaystyle 1/x\in \mathbb {C} (x)} 的原函数 ln ( x ) + C {\displaystyle \ln(x)+C} 不属于微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} ,但具有如定理所述的对数形式(注意 x , C C ( x ) , 1 C {\displaystyle x,C\in \mathbb {C} (x),1\in \mathbb {C} } )。


类似的, 1 / ( x 2 + 1 ) C ( x ) {\displaystyle 1/(x^{2}+1)\in \mathbb {C} (x)} ,其原函数反正切函数可以表达成对数的形式

显然也有 C , 1 + i x 1 i x C ( x ) , i 2 C {\displaystyle C,{\frac {1+ix}{1-ix}}\in \mathbb {C} (x),-{\frac {i}{2}}\in \mathbb {C} }

下面考虑 f ( x ) = 1 / ( x ln ( x ) ) {\displaystyle f(x)=1/(x\ln(x))} 的原函数,显然这不属于 C ( x ) {\displaystyle \mathbb {C} (x)} ln ( x ) {\displaystyle \ln(x)} C ( x ) {\displaystyle \mathbb {C} (x)} 上的超越函数)。把 ln ( x ) {\displaystyle \ln(x)} 添加到 C ( x ) {\displaystyle \mathbb {C} (x)} ,形成更大的微分域 ( F , d / d x ) , F = C ( x ) ( ln ( x ) ) {\displaystyle (F,\mathrm {d} /\mathrm {d} x),F=\mathbb {C} (x)(\ln(x))} (于是 f F {\displaystyle f\in F} )。 f ( x ) {\displaystyle f(x)} 的一个原函数是 ln ( ln ( x ) ) {\displaystyle \ln(\ln(x))} ,于是我们再次看到,使用包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} 里的函数的对数,表达出了 f ( x ) {\displaystyle f(x)} 的原函数。

事实上,Risch 1969 年的论文表明,对于任意复杂的初等函数,总可以找到适当的包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} ,以及从 C ( x ) {\displaystyle \mathbb {C} (x)} 开始的初等域扩张塔 C ( x , x 1 , . . . , x n ) = F {\displaystyle \mathbb {C} (x,x_{1},...,x_{n})=F} 。并在此扩张塔的基础上,基于刘维尔定理找到其初等原函数,或证明不存在这样的初等原函数(参见 Risch算法)。

设想我们想知道形如 f ( x ) e g ( x ) , f ( x ) , g ( x ) C ( x ) {\displaystyle f(x)e^{g(x)},f(x),g(x)\in \mathbb {C} (x)} 的函数是否有初等原函数。由刘维尔定理可以得到,这等价于判断是否存在 a ( x ) C ( x ) {\displaystyle a(x)\in \mathbb {C} (x)} 使得

若存在这样的 a ( x ) {\displaystyle a(x)} ,那么其原函数即为 a ( x ) e g ( x ) {\displaystyle a(x)e^{g(x)}}

例如对于 e x 2 {\displaystyle e^{x^{2}}} ,(即 f ( x ) = 1 , g ( x ) = x 2 {\displaystyle f(x)=1,g(x)=x^{2}} ),应有

如果存在这样的 a ( x ) {\displaystyle a(x)} ,那么一定可以作部分分式展开:

其中 p ( x ) C {\displaystyle p(x)\in \mathbb {C} } C {\displaystyle \mathbb {C} } 上的多项式, r j C {\displaystyle r_{j}\in \mathbb {C} } a ( x ) {\displaystyle a(x)} 分母多项式的根,系数 A j k C {\displaystyle A_{jk}\in \mathbb {C} } 被唯一确定。代入前式即可证明这样的 a ( x ) {\displaystyle a(x)} 不存在(因为 2 x a ( x ) {\displaystyle 2x\cdot a(x)} 会增加多项式的次数,故对照左端项应有 p ( x ) = 0 {\displaystyle p(x)=0} ,而对 1 / ( x r j ) k {\displaystyle 1/(x-r_{j})^{k}} 求导会增加分母的次数,对照左端项得到这一部分也应该是 0,这样就得到矛盾 1=0)。从而函数 e x 2 {\displaystyle e^{x^{2}}} 不存在初等原函数。

借助完全类似的方法,我们可以证明 e x / x {\displaystyle e^{x}/x} (对应 1 / x = a + a {\displaystyle 1/x=a'+a} ),以及 sin ( x ) / x {\displaystyle \sin(x)/x} 也不存在初等原函数. 更进一步,对 e x / x {\displaystyle e^{x}/x} 换元可以得到 e e

相关

  • 韦尔德县韦尔德县 (Weld County, Colorado)是美国科罗拉多州北部的一个县,北邻内布拉斯加州和怀俄明州。面积8,443平方公里。根据美国2000年人口普查,共有人口180,936人,2005年人口为22
  • 辛德曼堡战役参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):阿肯色波斯特战役(Battle of Arkansas Post),或称辛德曼堡
  • 美国电话电报公司美国电话与电报公司(英语:AT&T Corporation, American Telephone & Telegraph 的缩写)是一家为企业客户及政府机构提供语音、影像、数据传输和网络服务的美国电信公司。美国电话
  • 胖吉猫胖吉猫(英语:Pusheen)又称胖吉喵,是美国插画师克莱儿.贝尔顿(英语:Claire Belton)根据她领养的猫咪(现在与克莱儿(英语:Claire Belton)的父母生活在一起)所设计出的角色,是一只灰色大花猫,
  • 犀牛石 (冰岛)犀牛石(冰岛语:Hvítserkur)坐落于冰岛西北部的胡纳湾(冰岛语:Húnaflói)中,是瓦斯半岛(冰岛语:Vatnsnes)东岸海中15米高的玄武巨岩。岩石底部有两个孔,随着潮涨潮落,岩石露出海面的
  • 氨基磺酸铵氨基磺酸铵是一个无机化合物,分子式NH4NH2SO3,可由尿素与硫酸作用而得。25℃时在水中的溶解度为216g,可溶于甲酰胺和甘油,遇热分解。大鼠急性经口LD50为3900mg/kg。可作非选择性
  • 弗拉基米尔·盖尔芬德弗拉基米尔·纳塔诺维奇·盖尔芬德(乌克兰语:Влади́мир Ната́нович Ге́льфанд,1923年3月1日 - 1983年11月25日),生于基洛夫格勒的一个犹太裔家庭的
  • 马哈巴德共和国马哈巴德共和国(库尔德语:کۆماری مەھاباد‎),也称库尔德斯坦共和国,是第二次世界大战结束后,伊朗库尔德人在苏联的支持下在伊朗西北部建立的短暂的库尔德人自治政权
  • 恬嫔恬嫔(18世纪?-1845年),富察氏,满洲镶黄旗人。广东监运使、左迁湖北盐法武昌道查清阿之嫡长女,生母为告退二等侍卫宗室科灵阿之女,刑部员外郎穆靖安之孙女,敦惠伯、西安将军兼领侍卫内
  • 维多利亚公主 (英国)维多利亚公主(英语:Victoria Alexandra Olga Mary,1868年6月6日-1935年12月3日)是英国王室的成员之一,是维多利亚女王的孙女,爱德华七世的次女,乔治五世的妹妹,挪威王后莫德的姐姐。