刘维尔定理 (微分代数)

✍ dations ◷ 2025-11-18 13:58:37 #域论,微分代数,微分方程,代数定理

刘维尔定理揭示了具有初等原函数的初等函数的本质特征。其最早由约瑟夫·刘维尔于十九世纪三四十年代提出,经后人推广到一般的微分域上,并被进一步推广运用在常微分方程组初等首次积分的研究上。

初等函数的原函数并不总是初等函数,例如 e x 2 {\displaystyle e^{-x^{2}}} 。若对于 f , g F {\displaystyle \forall f,g\in F} 是 的微分域扩张 K = F ( h ) {\displaystyle K=F(h)} 是指接连进行如上的扩张得到的微分域 F ( h 1 , . . . , h n ) {\displaystyle F(h_{1},...,h_{n})} ,其中 h j {\displaystyle h_{j}} F ( h 1 , . . . , h j 1 ) {\displaystyle F(h_{1},...,h_{j-1})} 上基本初等。


一个函数 f ( x ) {\displaystyle f(x)} 称为初等函数 若它在微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数加普通导数)的某个初等扩张中。

以下为刘维尔第一定理(Theorem of Liouville-first statement)。

F {\displaystyle F} 为微分域, K {\displaystyle K} F {\displaystyle F} 的初等扩张,且 C o n ( K , δ ) = C o n ( F , δ ) {\displaystyle \mathrm {Con} (K,\delta )=\mathrm {Con} (F,\delta )} ,对于 f F {\displaystyle f\in F} ,存在 g K {\displaystyle g\in K} , 使得 δ g = f {\displaystyle \delta g=f} ,则

其中 c 1 , . . . , c n C o n ( F , δ ) {\displaystyle c_{1},...,c_{n}\in \mathrm {Con} (F,\delta )} , u 1 , . . . , u n , v F {\displaystyle u_{1},...,u_{n},v\in F}

以下为刘维尔第二定理(Theorem of Liouville-second statement),又称强刘维尔定理(Strong Liouville theorem)。

F {\displaystyle F} 为微分域, B = C o n ( F , δ ) {\displaystyle B=\mathrm {Con} (F,\delta )} ,若 g {\displaystyle g} F {\displaystyle F} 上初等,且满足 δ g = f F {\displaystyle \delta g=f\in F} ,则

其中 c 1 , . . . , c n B ¯ {\displaystyle c_{1},...,c_{n}\in {\bar {B}}} v F {\displaystyle v\in F} , u 1 , . . . , u n , v B ¯ F {\displaystyle u_{1},...,u_{n},v\in {\bar {B}}F} B ¯ {\displaystyle {\bar {B}}} B {\displaystyle B} 的代数闭域.每个 F {\displaystyle F} B ¯ F {\displaystyle {\bar {B}}F} 的自同构交换求和的顺序。

例如复数域上的有理函数域 C ( x ) {\displaystyle \mathbb {C} (x)} 与通常的导数即构成了一个微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} (有理函数的导数仍是有理函数),该微分域的常数集即是复数集 C {\displaystyle \mathbb {C} }

函数 1 / x C ( x ) {\displaystyle 1/x\in \mathbb {C} (x)} 的原函数 ln ( x ) + C {\displaystyle \ln(x)+C} 不属于微分域 ( C ( x ) , d / d x ) {\displaystyle (\mathbb {C} (x),\mathrm {d} /\mathrm {d} x)} ,但具有如定理所述的对数形式(注意 x , C C ( x ) , 1 C {\displaystyle x,C\in \mathbb {C} (x),1\in \mathbb {C} } )。


类似的, 1 / ( x 2 + 1 ) C ( x ) {\displaystyle 1/(x^{2}+1)\in \mathbb {C} (x)} ,其原函数反正切函数可以表达成对数的形式

显然也有 C , 1 + i x 1 i x C ( x ) , i 2 C {\displaystyle C,{\frac {1+ix}{1-ix}}\in \mathbb {C} (x),-{\frac {i}{2}}\in \mathbb {C} }

下面考虑 f ( x ) = 1 / ( x ln ( x ) ) {\displaystyle f(x)=1/(x\ln(x))} 的原函数,显然这不属于 C ( x ) {\displaystyle \mathbb {C} (x)} ln ( x ) {\displaystyle \ln(x)} C ( x ) {\displaystyle \mathbb {C} (x)} 上的超越函数)。把 ln ( x ) {\displaystyle \ln(x)} 添加到 C ( x ) {\displaystyle \mathbb {C} (x)} ,形成更大的微分域 ( F , d / d x ) , F = C ( x ) ( ln ( x ) ) {\displaystyle (F,\mathrm {d} /\mathrm {d} x),F=\mathbb {C} (x)(\ln(x))} (于是 f F {\displaystyle f\in F} )。 f ( x ) {\displaystyle f(x)} 的一个原函数是 ln ( ln ( x ) ) {\displaystyle \ln(\ln(x))} ,于是我们再次看到,使用包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} 里的函数的对数,表达出了 f ( x ) {\displaystyle f(x)} 的原函数。

事实上,Risch 1969 年的论文表明,对于任意复杂的初等函数,总可以找到适当的包含 f ( x ) {\displaystyle f(x)} 的微分域 F {\displaystyle F} ,以及从 C ( x ) {\displaystyle \mathbb {C} (x)} 开始的初等域扩张塔 C ( x , x 1 , . . . , x n ) = F {\displaystyle \mathbb {C} (x,x_{1},...,x_{n})=F} 。并在此扩张塔的基础上,基于刘维尔定理找到其初等原函数,或证明不存在这样的初等原函数(参见 Risch算法)。

设想我们想知道形如 f ( x ) e g ( x ) , f ( x ) , g ( x ) C ( x ) {\displaystyle f(x)e^{g(x)},f(x),g(x)\in \mathbb {C} (x)} 的函数是否有初等原函数。由刘维尔定理可以得到,这等价于判断是否存在 a ( x ) C ( x ) {\displaystyle a(x)\in \mathbb {C} (x)} 使得

若存在这样的 a ( x ) {\displaystyle a(x)} ,那么其原函数即为 a ( x ) e g ( x ) {\displaystyle a(x)e^{g(x)}}

例如对于 e x 2 {\displaystyle e^{x^{2}}} ,(即 f ( x ) = 1 , g ( x ) = x 2 {\displaystyle f(x)=1,g(x)=x^{2}} ),应有

如果存在这样的 a ( x ) {\displaystyle a(x)} ,那么一定可以作部分分式展开:

其中 p ( x ) C {\displaystyle p(x)\in \mathbb {C} } C {\displaystyle \mathbb {C} } 上的多项式, r j C {\displaystyle r_{j}\in \mathbb {C} } a ( x ) {\displaystyle a(x)} 分母多项式的根,系数 A j k C {\displaystyle A_{jk}\in \mathbb {C} } 被唯一确定。代入前式即可证明这样的 a ( x ) {\displaystyle a(x)} 不存在(因为 2 x a ( x ) {\displaystyle 2x\cdot a(x)} 会增加多项式的次数,故对照左端项应有 p ( x ) = 0 {\displaystyle p(x)=0} ,而对 1 / ( x r j ) k {\displaystyle 1/(x-r_{j})^{k}} 求导会增加分母的次数,对照左端项得到这一部分也应该是 0,这样就得到矛盾 1=0)。从而函数 e x 2 {\displaystyle e^{x^{2}}} 不存在初等原函数。

借助完全类似的方法,我们可以证明 e x / x {\displaystyle e^{x}/x} (对应 1 / x = a + a {\displaystyle 1/x=a'+a} ),以及 sin ( x ) / x {\displaystyle \sin(x)/x} 也不存在初等原函数. 更进一步,对 e x / x {\displaystyle e^{x}/x} 换元可以得到 e e

相关

  • 顺反异构物脯氨酸(Proline,缩写为Pro 或P )是一个α-氨基酸,20个DNA编码的其中之一。其对应密码子为CCU,CCC,CCA和CCG。脯氨酸不是一种必需氨基酸,人体可以自行合成。在20个蛋白质形成氨基酸
  • 台湾炼瓦会社打狗工场坐标:22°38′31″N 120°17′04″E / 22.6418715726752°N 120.284501381626°E / 22.6418715726752; 120.284501381626中都唐荣砖窑厂位于高雄市三民区爱河旁,前身为“台湾
  • 结合能结合能(英语:Binding Energy)是指两个或多个粒子结合成更大的微粒释放的能量,或相应的微粒分解成原来的粒子需要吸收的能量,这两种表述是等价的。比如质子和中子结合成原子核时放
  • 十三行广州十三行(英语:Thirteen Factories或Thirteen Hongs of Canton),又称广东十三行、十三洋行,是指清朝沿用明朝之习惯称呼广州对外贸易特区内的十三家牙行商人。后来,这地区称为“
  • 世界产业工人3,028 (2017年美国)2,000 (2018年英国爱尔兰)200 (2015年德语区) 100 (2019年澳大利亚)世界产业工人(英语:Industrial Workers of the World,缩写为IWW)是一个国际性工会联合组
  • 碘化锂碘化锂(化学式:LiI)是锂的碘化物,为易潮解的白色晶体,露置于空气时易被氧化为碘而发黄。硝酸、硫酸或盐酸也可以将碘化锂溶液氧化出碘。它易溶于水,可以从水溶液中析出多种水合物
  • 卡洛斯 (卡拉布里亚公爵)卡洛斯·玛利亚·阿方索·马塞尔(西班牙语:Carlos Maria Alfonso Marcel,1938年1月16日-2015年10月5日),出生在瑞士洛桑。两西西里王子,西班牙王子,卡拉布里亚公爵、波旁-两西西里王
  • 额贺福志郎额贺福志郎(1944年1月11日-),日本政治家、自由民主党众议员。历任防卫厅长官、经济企划厅长宫、经济财政政策担当大臣、财务大臣、自由民主党政务调查会会长。平成研究会(额贺派)会
  • 塞西莉亚公主 (瑞典)瑞典的塞西莉亚(瑞典语:Cecilia av Sverige,1807年6月22日-1844年1月27日),欧登堡大公夫人,瑞典国王古斯塔夫四世·阿道夫的第三女。1831年,塞西莉亚与欧登堡大公奥古斯特结婚,两人共
  • 李希宗李希宗(501年-540年),字景玄,出自赵郡李氏东祖,东魏大臣。李希宗曾祖父李顺,祖父李式,父亲李宪,过继给李宪的哥哥。李希宗性宽和,仪貌雅丽,涉猎书传,有文才。起家担任太尉参军事,转直后,领