贝叶斯推论

✍ dations ◷ 2025-09-02 16:43:14 #贝叶斯推论
贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:其中针对不同的 H {displaystyle textstyle H} 数值,只有 P ( H ) {displaystyle textstyle P(H)} 和 P ( E ∣ H ) {displaystyle textstyle P(Emid H)} (都在分子)会影响 P ( H ∣ E ) {displaystyle textstyle P(Hmid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。贝叶斯定理也可以写成下式:其中系数 P ( E ∣ H ) P ( E ) {displaystyle textstyle {frac {P(Emid H)}{P(E)}}} 可以解释成 E {displaystyle E} 对 H {displaystyle H} 几率的影响。贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础 。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 热带沙漠热带干旱半干旱气候,其中热带干旱气候又称热带沙漠气候。分布于纬度30度附近的大陆西岸和中部,具体地区有:撒哈拉、非洲西南部、阿拉伯半岛、澳大利亚中部、美国西南部、墨西哥
  • 弓型虫感染症弓虫症是一种由弓形虫造成的寄生虫病,成年感染一般无症状。弓虫症常会伴随持续几周或几月之久的类似于流感的症状(英语:flu-like illness),例如肌肉疼痛、淋巴结触痛。一小部分人
  • 语序语序(英语:word order)是一种文法上的词汇的顺序,任何语言都有主词、受词、动词之分,因此就出现了语序和语法格的问题,多数的语言都有一种主要的语序,如汉语、英语等,但是有时不只有
  • 高分子高分子物理(英语:Polymer physics)是研究高分子物质物理性质的科学。其研究的主要方向包括高分子形态,高分子机械性能,高分子溶液,高分子结晶等热力学和统计力学方向的学科,以及高
  • 柠檬酸合酶柠檬酸合成酶(英语:Citrate synthase,EC 2.3.3.1)几乎存在于所有活细胞中并且是催化三羧酸循环第一步的一个限速酶。此酶存在于真核细胞的线粒体中,但它是由细胞核DNA而非线粒体D
  • 太平洋共同体太平洋共同体(英语:the Pacific Community,英文简称:SPC),是由南太平洋委员会在1998年2月6日扩编而成的太平洋岛屿集中区域合作机制。会员国保留之前南太平洋委员会成员国的资格。
  • 西亚格里乌斯王国苏瓦松王国是西罗马帝国在高卢北部塞纳河和索姆河之间的残存国家,该政权存在25年的时间。政权的统治者,尤其是末任国王被周围的日耳曼部落称为“罗马人的国王”,而该政权则被历
  • 卡酥来砂锅卡酥来砂锅(英语:Cassoulet)是英法百年战争时发明,为了慰劳前线的士兵。这道菜由卡酥来(Cassoulet)这种陶土制的食器熬煮而成,其中烹调的时间非常费时。它的主要食材有油封鸭或羊肉
  • 银两银锭指铸成锭状的银两(“锭”亦通“铤”,量词,本指未经冶炼铸造的金属块)。元朝以“元”为国号,库银逐称为元宝(取其元朝之宝之意。元初的“中统元宝”也有发行交钞及钱币),此后“元
  • 麝香猫咖啡猫屎咖啡,又称麝香猫咖啡(英语:civet coffee,印尼语:Kopi Luwak,菲律宾语:kape motit, kape alamid, kape melô, kape musang)。在印尼语中,Kopi意为咖啡,Luwak意为麝香猫,猫屎咖啡的