围棋与数学

✍ dations ◷ 2025-08-02 01:40:09 #围棋,组合博弈论,趣味数学

围棋是世界上最流行的游戏之一。由于其规则优美而简单,围棋一直是数学研究的灵感来源。11世纪的中国学者沈括在《梦溪笔谈》中估计,围棋所有可能的局面数量为 10172 左右。近年来,约翰·H·康威在对围棋的研究中发明了超现实数,并促进了组合博弈论(英语:combinatorial game theory)的发展(“围棋微数字”就是它在围棋中使用的一个具体示例)。

广义围棋是在 的棋盘上进行的,在广义围棋的给定位置确定赢家的计算复杂性主要取决于打劫规则。

围棋的复杂性“几乎”是在PSPACE内的,这是因为在对弈的非打劫阶段,每一手都是不可逆的,只有通过吃子才有可能出现重复的棋形,使得复杂性提高。

没有打劫的话,围棋是PSPACE困难的。 这是通过把PSPACE完全的TQBF(真量化布尔公式)简化到广义地理(英语:generalized geography),到平面广义地理,到最高3阶的广义地理,最后简化到围棋棋盘位置。

有打劫的围棋则不在PSPACE中。尽管实际的棋局似乎从没超出过 n 2 {\displaystyle n^{2}} 的棋局数量,包括在实际中不可能下出的棋局,Tromp和Farnebäck分别给出 10480 的下限和 101710 的上限。人们听到最多的所有可能的棋局数量为 10700, 这个数字是361手棋的简单排列(361! = 10768)得出的。另一个常见的推导是假设每一手棋都有 n 个选择,总共 L 手棋,那么棋局总量就是 NL。就比如在某些职业对局中能够见到的一局棋400手,按照这种方法算出来就是 361400(101023)种可能的棋局。

所有可能的对局总数是棋盘大小和手数的函数。虽然大多数棋局都在400手以内,甚至200手都不到,但棋局是有可能更长的。

所有可能的对局总数可以通过多种方式从棋盘大小估算,有些方式会比另外一些更严格。最简单的,棋盘大小的简单排列 (N)L,没有考虑到非法吃子,以及非法的盘面。令 N 为棋盘大小(19×19=361),L 为最长的棋局长度,NL 构成了下界。在Tromp/Farnebäck的论文中给出了更精确的限制。

10700 这个数字对于200手以内的所有棋局来说是一种高估,但对361手以内的所有棋局来说是一种低估。而4700万手的棋,在一秒一手、每天下16个小时的情况下,也要下2¼年(一年有3100万秒)。

相关

  • 医学标题表医学主题词(Medical Subject Headings,MeSH,或译医学主题词表)是一部庞大的受控词表(或者说,元数据系统),是广泛应用于医学信息检索的一种工具。在生命科学领域旨在用于标引(英语:Subj
  • 1998年本土世界杯1998年国际足联世界杯(英语:1998 FIFA World Cup,法语:Coupe du Monde – France 98,1998年6月10日–7月12日),通常称为“98年法国世界杯”、France '98,于1998年在法国举行。法国队
  • 升华热升华热或升华焓,是在指定温度和压强(通常为标准状况)下,使一摩尔的物质升华所需要的热量。升华热的单位通常是kJ/mol,但有时也会使用kJ/kg作为单位。同一种物质的升华热等于其汽
  • 悉尼悉尼市(雪梨市)(英语:City of Sydney)位于澳大利亚新南威尔士州,由悉尼中心商务区及附近的悉尼都会区的内西区的郊区组成。悉尼市是一个地方政府区域,以往的地方政府区域南悉尼市于
  • 超导性超导体(superconductor),指可以在特定温度以下,呈现电阻为零的导体。零电阻和完全抗磁性是超导体的两个重要特性。超导体电阻转变为零的温度,称为超导临界温度,据此超导材料可以分
  • 西雅图华盛顿大学华盛顿大学(英语:University of Washington,缩写为UW),一所位于美国华盛顿州西雅图的公立研究型大学。创建于1861年,是美国西岸最古老的大学,也是美国西北部最大的大学,被誉为公立常
  • 虫部虫部,為漢字索引中的部首之一,康熙字典214個部首中的第一百四十二個(六劃的則為第二十五個)。就繁體和簡體中文中,虫部歸於六劃部首。虫部通常以左、右、下方為部字。且無其他部
  • CALL《声命线索》(韩语:콜 ,预计会是2020年韩国上映的女性惊悚韩国电影 ,由朴信惠、全锺瑞及金成铃主演。也是导演李重贤以14分钟的短片电影横扫各大电影节后的第一部长篇电影。此电
  • 今村奈良臣今村 奈良臣(日语:今村 奈良臣/いまむら ならおみ  */?,1934年4月1日-2020年2月28日),日本农业经济学家,东京大学名誉教授。1934年生于大分县。1957年毕业于东京大学农学部农业经
  • 流浪者之歌 (小说)《流浪者之歌》(),又译《悉达多》,德国小说家黑塞在1922年所著的三部式文学作品,也是其第九部作品,描写主人公悉达多在古老的印度追求他自己的三个重要历程的过程。从自觉的禁欲主