首页 >
黎曼曲面
✍ dations ◷ 2025-06-07 20:14:45 #黎曼曲面
数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被视为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函数。每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个复结构),因为全纯函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有复结构,但是莫比乌斯带,克莱因瓶和射影平面没有。黎曼曲面的几何性质是最妙的,它们也给与其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。令X为一个豪斯多夫空间。一个从开子集U⊂C到X的子集的同胚称为坐标卡。两个有重叠区域的坐标卡f和g称为相容的,如果映射f o g-1和g o f-1是在定义域上全纯的。若A一组相容的图,并且每个X中的x都在某个f的定义域中,则称A为一个图册'。当我们赋予X一个图册A,我们称(X,A)为一个黎曼曲面。如果知道有图册,我们简称X为黎曼曲面。不同的图册可以在X上给出本质上相同的黎曼曲面结构;为避免这种模糊性,我们有时候要求X为极大的,也就是它不是任何一个更大的图集的子集。根据佐恩引理每个图集A包含于一个唯一的最大图集中。两个黎曼曲面M和N之间的函数f : M → N称为全纯,如果对于M的图集中的每个图g和N的图集中的每个图h,映射h o f o g-1在所有有定义的地方是全纯的(作为从C到C的函数)。两个全纯函数的复合是全纯的。两个黎曼曲面M和N称为保角等价(或共形等价),如果存在一个双射的从M到N的全纯函数并且其逆也是全纯的(最后一个条件是自动满足的所以可以略去)。两个保角等价的黎曼曲面对于所有的实际应用来讲是完全相同的。每个单连通的黎曼曲面和C或黎曼球C ∪ {∞}或开圆盘{z ∈ C : |z| < 1}保角等价。这个命题称为单值化定理。每个连通黎曼曲面可以转成有常数曲率-1,0或1的完备实黎曼流形。这个黎曼结构除了度量的缩放外是唯一。有曲率-1的黎曼曲面称为双曲的;开圆盘是个经典的例子。有曲率0的黎曼曲面称为抛物的;C是典型的抛物黎曼曲面。最后,有曲率+1的黎曼曲面称为椭圆的;黎曼球C ∪ {∞}是这样的一个例子。对于每个闭抛物黎曼曲面,基本群同构于2阶格群,因而曲面可以构造为C/Γ,其中C是复平面而Γ是格群。陪集的代表的集合叫做基本域。类似的,对每个双曲黎曼曲面,基本群同构于富克斯群,因而曲面可以由富克斯模型H/Γ构造,其中H是上半平面而Γ是富克斯群。H/Γ陪集的代表是自由正则集,可以作为度量基本多边形。当一个双曲曲面是紧的,则曲面的总面积是
4
π
(
g
−
1
)
{displaystyle 4pi (g-1)}
,其中g是曲面的亏格;面积可由把高斯-博内定理应用到基本多边形的面积上来算出。前面我们提到黎曼曲面,象所有复流形,象实流形一样可定向。因为复图f和g有变换函数h = f(g-1(z)),我们可以认为h是从R2开集到R2的映射,在点z的雅可比矩阵也就是由乘以复数h'(z)的运算给出的实线性变换。但是,乘以复数α的行列式等于|α|^2,所以h的雅可比阵有正的行列式值。所以,复图集是可定向图集。黎曼最早开始研究黎曼曲面。黎曼曲面以他命名。
相关
- 处方处方(符号“℞”),是医师开给病人的医疗文书,是药剂师或司药员向病人发放药品的重要依据,内容一般包括患者姓名、年龄、联系方式、所用药品名称、用量(剂量)等。处方所载内容一般会
- 乳酸发酵呼吸作用,又称为细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解并转化能量的化学过程,也称为释放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作
- 拉克酒拉克酒(土耳其语:Rakı,奥斯曼土耳其语:راقى,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Co
- 韩国烧酒在韩国,烧酒(朝鲜语:소주/燒酒),或称韩国烧酎、朝鲜烧酒,是一种源于朝鲜半岛的烧酒,主要原料是大米,通常还配以小麦、大麦或者甘薯等。韩国烧酒颜色透明,韩国出产、面向外国市场的烧酒
- 前夫丈夫,是男女婚姻中对男性的称谓,与妻子相对应。古代妻子对自己配偶又称夫婿、夫君、相公、官人,闽南语则称翁婿(闽南语读“ㄤ”(ang /ɑŋ/),字用“翁”)、头家、夫婿。外子则是妻
- 书吏书吏又称作抄写员、文士,是古代一种专门为人纪录事情或抄写文本的职业。书吏的工作内容主要是抄写书籍,其内容可能是宗教文本、虚构故事、学术文本或教诲文学。有时候书吏还必
- 存储器计算机存储器(英语:Computer memory)是一种利用半导体、磁性介质等技术制成的存储数据的电子设备。其电子电路中的数据以二进制方式存储,不同存储器产品中基本单元的名称也不一
- 凯鲁比尼马里亚·路易吉·卡洛·泽诺比奥·萨尔瓦多·凯鲁比尼(意大利语:Maria Luigi Carlo Zenobio Salvatore Cherubini,1760年9月8日-1842年3月15日) 是一位出生于意大利、在法国渡过
- 被立王被立王是一个在中国大陆境内活动的教派,由安徽省颍上县人吴扬明创立。1991年初,“被立王”吴扬明差遣其骨干“怜悯”和“换代”(教内称呼)从安徽到湖南发展势力。“怜悯”本名刘
- 合理化药物设计药物设计(英语:Drug design),又称理性药物设计(rational drug design),根据对于靶点(Biological target)的现有知识,去寻找与发明出新型药物的过程。药物设计根据有机小分子物质(如蛋白