黎曼曲面

✍ dations ◷ 2025-05-17 11:10:40 #黎曼曲面
数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被视为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函数。每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个复结构),因为全纯函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有复结构,但是莫比乌斯带,克莱因瓶和射影平面没有。黎曼曲面的几何性质是最妙的,它们也给与其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。令X为一个豪斯多夫空间。一个从开子集U⊂C到X的子集的同胚称为坐标卡。两个有重叠区域的坐标卡f和g称为相容的,如果映射f o g-1和g o f-1是在定义域上全纯的。若A一组相容的图,并且每个X中的x都在某个f的定义域中,则称A为一个图册'。当我们赋予X一个图册A,我们称(X,A)为一个黎曼曲面。如果知道有图册,我们简称X为黎曼曲面。不同的图册可以在X上给出本质上相同的黎曼曲面结构;为避免这种模糊性,我们有时候要求X为极大的,也就是它不是任何一个更大的图集的子集。根据佐恩引理每个图集A包含于一个唯一的最大图集中。两个黎曼曲面M和N之间的函数f : M → N称为全纯,如果对于M的图集中的每个图g和N的图集中的每个图h,映射h o f o g-1在所有有定义的地方是全纯的(作为从C到C的函数)。两个全纯函数的复合是全纯的。两个黎曼曲面M和N称为保角等价(或共形等价),如果存在一个双射的从M到N的全纯函数并且其逆也是全纯的(最后一个条件是自动满足的所以可以略去)。两个保角等价的黎曼曲面对于所有的实际应用来讲是完全相同的。每个单连通的黎曼曲面和C或黎曼球C ∪ {∞}或开圆盘{z ∈ C : |z| < 1}保角等价。这个命题称为单值化定理。每个连通黎曼曲面可以转成有常数曲率-1,0或1的完备实黎曼流形。这个黎曼结构除了度量的缩放外是唯一。有曲率-1的黎曼曲面称为双曲的;开圆盘是个经典的例子。有曲率0的黎曼曲面称为抛物的;C是典型的抛物黎曼曲面。最后,有曲率+1的黎曼曲面称为椭圆的;黎曼球C ∪ {∞}是这样的一个例子。对于每个闭抛物黎曼曲面,基本群同构于2阶格群,因而曲面可以构造为C/Γ,其中C是复平面而Γ是格群。陪集的代表的集合叫做基本域。类似的,对每个双曲黎曼曲面,基本群同构于富克斯群,因而曲面可以由富克斯模型H/Γ构造,其中H是上半平面而Γ是富克斯群。H/Γ陪集的代表是自由正则集,可以作为度量基本多边形。当一个双曲曲面是紧的,则曲面的总面积是 4 π ( g − 1 ) {displaystyle 4pi (g-1)} ,其中g是曲面的亏格;面积可由把高斯-博内定理应用到基本多边形的面积上来算出。前面我们提到黎曼曲面,象所有复流形,象实流形一样可定向。因为复图f和g有变换函数h = f(g-1(z)),我们可以认为h是从R2开集到R2的映射,在点z的雅可比矩阵也就是由乘以复数h'(z)的运算给出的实线性变换。但是,乘以复数α的行列式等于|α|^2,所以h的雅可比阵有正的行列式值。所以,复图集是可定向图集。黎曼最早开始研究黎曼曲面。黎曼曲面以他命名。

相关

  • 辽东辽东在现代汉语中多指辽东半岛。辽东半岛是位于中国辽宁辽河以东,渤海与黄海之间的一个半岛。而在中国历史上,“辽东”范围稍大于辽东半岛,大致上为现在辽河以东的辽宁省地区,是
  • 氧四环素土霉素 Oxytetracycline也称为“地霉素”或“氧四环素”,是第二个被发现的广谱抗菌的四环素类抗生素。土霉素是由Finlay等人在辉瑞实验室附近分离到的链霉菌Streptomyces rim
  • 笑气一氧化二氮或氧化亚氮(英语:Nitrous oxide),无色有甜味气体,又称笑气,是一种氧化剂,化学式N2O,在一定条件下能支持燃烧,但在室温下稳定,有轻微麻醉作用,其麻醉作用于1799年由英国化学家
  • 酉部,为汉字索引中的部首之一,康熙字典214个部首中的第一百六十四个(七划的则为第十八个)。就正体和简体中文中,酉部归于七划部首。酉部通常从左方、下方为部字。且无其他部首可
  • 翼龙目见翼龙目的分类翼龙目(学名:Pterosauria),希腊文意思为“有翼的蜥蜴”,是一个飞行爬行动物的演化支。翼龙类生存于三叠纪晚期到白垩纪末期,约2亿1,600万年前到6,600万年前。翼龙类
  • 图特摩斯四世图特摩斯四世(?-约公元前1391年),古埃及第十八王朝的第八位法老(约公元前1401年-约公元前1391年在位)。阿蒙霍特普二世之子。他是已知最早提出崇拜阿顿神的埃及法老。在他印章上的铭
  • 中国钢铁中国钢铁公司(简称中钢)是台湾最大的钢铁企业,为十大建设的重要项目之一,由中华民国政府出资成立,现为民营企业。其中钢集团总部大楼位于高雄市前镇区成功二路88号,总公司与主要工
  • Jones, DanielDJ音标(英语:Daniel Jones Phonetic Symbol),是一种标英式发音的IPA音标,发明者是丹尼尔·琼斯。他根据IPA编了一本英国英语的发音辞典English Pronouncing Dictionary(第1版至第1
  • 李定国农民李定国(1620年7月11日-1662年7月21日),字鸿远、宁宇。陕西延安人,一说榆林人。明末民变势力之一大西军将领,张献忠义子,封为安西将军。隆武二年(1646年)张献忠战死后,与孙可望等率
  • 星海音乐学院星海音乐学院位于中华人民共和国广东省广州市,是中国华南地区唯一的高等音乐专业本科大学,其前身可以追溯到1932年由马思聪、陈洪创办的广州音乐院。学校主要以音乐学科为主,注