超几何级数

✍ dations ◷ 2025-08-29 18:29:45 #超几何级数
在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点(英语:Regular singular point)的二阶线性常微分方程的解都可以用超几何函数表示。当 c {displaystyle c} 不是0,-1,-2...时,对于|z| < 1,超几何函数可用如下幂级数定义2 F 1 ( a , b ; c ; z ) = ∑ n = 0 ∞ a ( n ) b ( n ) c ( n ) z n n ! {displaystyle ,_{2}F_{1}(a,b;c;z)=sum _{n=0}^{infty }{a^{(n)}b^{(n)} over c^{(n)}},{z^{n} over n!}}其中   x ( n ) {displaystyle x^{(n)}} 是递进阶乘,定义为:当a或b是0或负整数时级数只有有限项。对于满足|z| ≥ 1 的复数z,超几何函数可以通过将上述在单位圆内定义的函数沿着避开支点0和1的任意路径做解析延拓来得到。很多普通的数学函数可以用超几何函数或它的极限表示出来,一些典型的例子如下:合流超几何函数(Kummer函数)可以用超几何函数的极限表示如下因此,所有合流超几何函数的特例,例如贝塞尔函数都可以表示成超几何函数的极限。勒让德函数是有3个正则奇点的二阶线性常微分方程的解,可以用以不同的形式用超几何函数表示,例如2 F 1 ( a , 1 − a ; c ; z ) = Γ ( c ) z 1 − c 2 ( 1 − z ) c − 1 2 P − a 1 − c ( 1 − 2 z ) {displaystyle {}_{2}F_{1}(a,1-a;c;z)=Gamma (c)z^{tfrac {1-c}{2}}(1-z)^{tfrac {c-1}{2}}P_{-a}^{1-c}(1-2z)}很多多项式,例如贾可比多项式 P(α,β)n及其特殊情形勒让德多项式, 车比雪夫多项式, Gegenbauer多项式都能用超几何函数表示2 F 1 ( − n , α + 1 + β + n ; α + 1 ; x ) = n ! ( α + 1 ) n P n ( α , β ) ( 1 − 2 x ) {displaystyle {}_{2}F_{1}(-n,alpha +1+beta +n;alpha +1;x)={frac {n!}{(alpha +1)_{n}}}P_{n}^{(alpha ,beta )}(1-2x)} 其它特殊情形还包括Krawtchouk多项式, Meixner多项式, Meixner–Pollaczek多项式。椭圆模函数(英语:Elliptic modular function)有时能表示成参数a, b, c是1, 1/2, 1/3, ... 或 0 的超几何函数之比的反函数。例如,若则是τ的椭圆模函数.不完整的beta函数 Bx(p,q) 表示成完整的椭圆积分 K 和 E 如下给出超几何函数满足的微分方程称为超几何方程,其形式为(参见广义超几何函数)展开后,得它有三个正则奇点:0, 1, ∞.超几何方程的指标方程(英语:Frobenius method)为它的两个指标 ρ 是 0 和 1-c。当 c不是整数时,超几何方程在 0 附近的两个线性无关的正则特解为:当 c 为 1 时,方程只有一个正则解。当 c 为其余整数时,另一个线性无关的正则特解涉及对数项。事实上,当 c 为整数时,另一个线性无关的特解总可以选取为 Meijer G-函数:只需作代换 t=1-z,方程变为:当 a+b-c 不是整数时,两个线性无关的正则特解为:当 a-b 不是整数时,两个线性无关的正则特解为:在讨论超几何方程的解的连接关系的时候,采用另外一套参数会更加方便。这组参数是根据方程在三个正则奇点处的指标之差来定义的。参数 α,β,γ 称为李代数参数。运用李代数参数,超几何方程在三个正则奇点处的正则解可以分别表示为:从上面的表达式可见,李代数参数比起通常用的参数 a,b,c 的优势在于能够体现不同区域的解之间的对称性。引入记号:则超几何方程在不同区域的解的连接关系可以表示为:分别对比两组式子最后一个等号之后的部分,可以看出每组的两个式子之间的对称性。完整的连接关系表称为 Kummer 表,上面四式是 Kummer 表的一部分。式中的 Β 是beta函数。可以证明等号右边的表达式是超几何方程的解。再考虑这个解在 z=0 附近的性质,可以确定它的具体形式。设则上式中的第二、三个等号可以通过直接展开大括号内的多项式乘积得到。上式两边分别对 t 从 1 到无穷大进行积分,等号右边为 0,于是我们证明了上面的积分表达式的确是超几何方程的解。另一方面,利用二项式定理,积分表达式等号右边的部分可以按 z 展开成幂级数,故可知等号右边应取 C 2F1(a,b,c;z) 的形式(因为另一个线性无关的特解无法展开成幂级数),其中 C 为待定的常数。对比积分表达式在 z=0 处的值与 Β 函数的定义,即可确定常数 C。Pfaff 变换将正则奇点 1 和 ∞ 交换(也就是将李代数参数中的 β 与 μ 对换):由 a,b 的对称性自然有:Pfaff 变换可以根据超几何方程得到。事实上,令则取由 w(u) 满足的超几何方程知等号右边为 0,再考虑函数 (1-z) -bw(z) 在 z=0 附近的性质即可得到 Pfaff 变换的公式。Pfaff 变换可以导出 Euler 变换,它将李代数参数 β 变成 -β:Pfaff 变换和 Euler 变换都是分式线性变换的例子,这得名于等式两边的超几何函数的宗量的联系,参见莫比乌斯变换。将上面提到的四个连接关系与 Pfaff 变换及 Euler 变换组合起来,就得到完整的 Kummer 表。给定一组李代数参数(α,β,μ),(±α,±β,±μ) 及其轮换对应着 24 个不同但彼此关联的超几何函数(F α, β, μ 恒等于 F α, β, -μ),利用前面提到的四个连接关系和 Pfaff 变换,它们中的任意一个可以通过任意另外两个表出。例如 Euler 变换可以表示为:下面是一个二次变换的例子:二次变换得名于等号两边超几何函数宗量的联系(一个二次函数和一个莫比乌斯变换的组合)。仿照上面 Pfaff 变换的证明,有:令则取仿照上面关于 Pfaff 变换的讨论,可得二次变换的公式。运用李代数参数,一般的二次变换可以表示为其中 f(z),g(z) 是 z 的函数, P(z) 表示 z 要满足的约束。下表给出了一些二次变换。另外还有:将它们与 Kummer 表组合起来,就得到所有的含有两个独立参变量的二次变换关系式。例如上面的例子可以通过组合第一行中的变换与 Pfaff 变换得到。另外还有一些只含有一个独立参变量的二次变换关系式。若一组李代数参数满足下列条件:有两个是 ±1/3,或者三个参数的绝对值相等,则有一个三次变换的公式将它与另一个超几何函数联系起来。另外有一些 4 次和 6 次变换的公式。其它次数的变换公式只有当参数取特定有理数值时存在。参见Goursat(1881)。这称为高斯原理(Gauss's theorem),可以由超几何函数的积分表示得到。范德蒙恒等式是它的特殊情形。这可以通过组合上表中的第二个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。上面两式分别被称为高斯第二求和原理与 Balley 原理。它们都可以通过组合第三个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。

相关

  • NCBI国家生物技术信息中心(National Center for Biotechnology Information,简称NCBI)是美国国家医学图书馆(NLM)的一部分(该图书馆是美国国家卫生研究所的一部分)。NCBI位于美国马里兰
  • 德新社德新社,全称德意志新闻社或德国新闻社(德语:Deutsche Presse Agentur,简写为DPA),是世界大通讯社之一。建于1949年的西德,为国家通讯社,两德统一后,成为德国全境的官方通讯社。其总部
  • 公元前1世纪公元前100年1月1日至前1年12月31日的这一段期间被称为前1世纪。
  • 核酶核酶(英语:ribozyme,又译核糖酶),又称核酸类酶、酶RNA、类酶RNA,是具有催化特定生物化学反应的功能的RNA分子,类似于蛋白质中的酶。在核酶的发现之前,酶,其被定义为催化作用的蛋白质,
  • 隋文帝隋文帝杨坚(541年7月21日-604年8月13日),隋朝开国皇帝,谥号文帝,庙号高祖,公元581年3月4日-公元604年8月13日在位,在位24年。杨坚小字那罗延,鲜卑赐姓为普六茹,普六茹氏为其父杨忠受西
  • 上艾瑟尔上艾瑟尔省(荷兰语:Overijssel)是荷兰东部的一个省,首府兹沃勒,人口1,109,250人(2006年)。该省与德国接壤上艾瑟尔省早期名为上艾瑟尔领地,当时整个疆域包含现在的德伦特省,1336年是
  • 餐点餐,或称饭、餐饭、餐点、膳、膳食,指人在一定时间内吃进的食物。吃饭地点通常会在家、饭馆、食堂或任何地方。做饭工具称作厨具,常见的有锅、炉、烤箱等。就餐(吃饭)餐桌静物写
  • 咒语咒语,信者认为某种特别的顺序或特殊音节念出,可促成某些神秘学中的特殊效果的语句。通常认为魔法师、巫师、僧侣或者宗教信徒能够借助咒语得到特殊的力量。佛门、道教常称咒语
  • 印度洋板块印度-澳洲板块(英语:Indo-Australian Plate,或印澳板块)是两块板块的合称,其中包含了澳洲大陆及周围海域,并向西北延伸,涵盖印度次大陆与附近水域。此板块可分成较大的澳洲板块与较
  • 渐冻症肌萎缩性脊髓侧索硬化症(英语:Amyotrophic lateral sclerosis,缩写为 ALS),也称为肌萎缩侧索硬化症,有时也称为卢·贾里格症(英语:Lou Gehrig's disease)、渐冻人症、运动神经元病,是