第二基本形式

✍ dations ◷ 2025-09-18 16:32:52 #微分几何,曲面的微分几何,黎曼几何,曲率

微分几何中,第二基本形式(second fundamental form)是三维欧几里得空间中一个光滑曲面的切丛上一个二次形式,通常记作 II。与第一基本形式一起,他们可定义曲面的外部不变量,主曲率。更一般地,若在黎曼流形中或洛伦兹流形中,的一个光滑超曲面上,选取了一个光滑单位法向量场,则可定义这样一个二形式。

R3 中一个参数曲面 的第二基本形式由高斯引入。最先假设曲面是两次连续可微函数的像, = (,),且平面 = 0 与曲面在原点相切。则 以及关于 和 的偏导数在 (0,0) 皆为零。从而 在 (0,0) 处的泰勒展开以二次项开始:

则在 (, ) 坐标中在原点处的第二基本形式是二次型:

对 上一个光滑点 ,总可以选取坐标系使得坐标的 -平面与 切于 ,然后可以相同的方式定义第二基本形式。

一个一般参数曲面的第二基本形式定义如下。设 r=r(,) 是 R3 中一个正则参数曲面,这里 r 是两个变量的光滑向量值函数。通常记 r 关于 和 的偏导数为 ru 与 rv。参数化的正则性意味着 ru 与 rv 对 r 的定义域中任何 (,) 是线性无关的。等价地,叉积 ru × rv 是曲面的一个非零法向量。参数化这样就定义了一个单位法向量场 n:

第二基本形式通常写成

在基 {ru, rv} 下的矩阵是

在参数化 -平面上一个给定点处系数 , , 由 r 在那个点的二次偏导数到 的法线上投影给出,利用点积可计算如下:

一个通常曲面 的第二基本形式定义如下:设 r=r(1,2) 是 R3 中一个正则参数曲面,这里 r 是两个变量的光滑向量值函数。通常记 r 关于 α 的偏导数为 rα,α = 1,2。参数化的正则性意味着 r1 与 r2 在 r 的定义域上是线性无关的,从而在每一点张成 S 的切空间。等价地,叉积 r1 × r2 是曲面的一个非零法向量。这样参数化定义了一个单位法向量场 n:

第二基本形式通常写作

上式使用了爱因斯坦求和约定。

在参数 (1, 2)-曲面给定点处系数 αβ 由 r 的二次偏导数到 的法线的投影给出,利用点积可写成:

在欧几里得空间中,第二基本形式由

给出,这里 ν {\displaystyle \nu } )的等价方法,

这里 v w {\displaystyle \nabla _{v}w} 超曲面上一个法向量场。如果仿射联络是无挠的,则第二基本形式是对称的。

第二基本形式的符号取决于 的方向的选取。(这称为曲面的余定向,对欧几里得空间中的曲面,等价于给定曲面的一个定向)。

第二基本形式可以推广到任意余维数。在这种情形下,它是切空间上取值于法丛的一个二次型,可以定义为

这里 ( v w ) {\displaystyle (\nabla _{v}w)^{\bot }} 是嵌入黎曼流形 (,) 中一个流形,则 在诱导度量下的曲率张量 R N {\displaystyle R_{N}} 的曲率张量 R M {\displaystyle R_{M}} 表示出来:


相关

  • UTC-4UTC−04:00时区比协调世界时慢4小时,使用于地区如下:
  • 约翰·奥斯丁约翰·奥斯丁(英语:John Langshaw Austin,著作常署名 J. L. Austin,1911年3月26日-1960年2月8日)英国哲学家,属于分析哲学学派,以语言哲学为专长。1929年开始在牛津大学贝利奥尔学院
  • 注册球员足球员,在英语中也称footballer或soccer player是一个运动员,包含各种不同的足球。主要形式有足球、美式足球、加拿大式足球、澳式足球、盖尔式足球、联盟式橄榄球和橄榄球。
  • 印巴分治印巴分治(英语:Partition of India;印地语:भारत का विभाजन,Bhārat kā Vibhājan 或 हिंदुस्तान का बटवारा,Hindustān kā Batwārā;印度斯坦语:
  • 倒果为因倒果为因或因果倒置(Reverse causation),是一种非形式谬误,是指把原因误认为是结果,或把结果误认为是原因。因果关系经常是基于二件事物的高度相关性,倒果为因谬误通常是因误判其
  • 多极展开在物理学里,多极展开方法广泛应用于涉及于质量分布产生的重力场、电荷分布产生的电势或电场、电流分布产生的磁向量势和磁场、电磁波的传播等等问题。使用多极展开,重力场或电
  • 阴茎 (消歧义)阴茎或阳具可以指:也可能指“生殖器崇拜”的象征物:
  • 消防员学校消防员学校,是应急管理部消防救援局直属的一所专门消防救援院校,位于江苏省南京市。1982年6月,经江苏省人民政府批准,成立江苏省消防教导大队,主要承担江苏消防部队预提警官培训
  • 哈里·哈里森哈里·哈里森(Harry Harrison,1925年3月12日-2012年8月15日),美国著名科幻作家,生于美国康涅狄格州斯坦福。著名作品有《死亡世界》系列、《不锈钢老鼠》系列、《伊甸园三部曲》等
  • 苏希尔·柯伊拉腊苏希尔·柯伊拉腊(尼泊尔语:सुशील कोइराला,英语:Sushil Koirala,1939年8月12日-2016年2月9日)生于尼泊尔比拉德讷格尔,尼泊尔政治家,尼泊尔大会党主席、尼泊尔前总理。柯