第二基本形式

✍ dations ◷ 2025-11-17 12:26:52 #微分几何,曲面的微分几何,黎曼几何,曲率

微分几何中,第二基本形式(second fundamental form)是三维欧几里得空间中一个光滑曲面的切丛上一个二次形式,通常记作 II。与第一基本形式一起,他们可定义曲面的外部不变量,主曲率。更一般地,若在黎曼流形中或洛伦兹流形中,的一个光滑超曲面上,选取了一个光滑单位法向量场,则可定义这样一个二形式。

R3 中一个参数曲面 的第二基本形式由高斯引入。最先假设曲面是两次连续可微函数的像, = (,),且平面 = 0 与曲面在原点相切。则 以及关于 和 的偏导数在 (0,0) 皆为零。从而 在 (0,0) 处的泰勒展开以二次项开始:

则在 (, ) 坐标中在原点处的第二基本形式是二次型:

对 上一个光滑点 ,总可以选取坐标系使得坐标的 -平面与 切于 ,然后可以相同的方式定义第二基本形式。

一个一般参数曲面的第二基本形式定义如下。设 r=r(,) 是 R3 中一个正则参数曲面,这里 r 是两个变量的光滑向量值函数。通常记 r 关于 和 的偏导数为 ru 与 rv。参数化的正则性意味着 ru 与 rv 对 r 的定义域中任何 (,) 是线性无关的。等价地,叉积 ru × rv 是曲面的一个非零法向量。参数化这样就定义了一个单位法向量场 n:

第二基本形式通常写成

在基 {ru, rv} 下的矩阵是

在参数化 -平面上一个给定点处系数 , , 由 r 在那个点的二次偏导数到 的法线上投影给出,利用点积可计算如下:

一个通常曲面 的第二基本形式定义如下:设 r=r(1,2) 是 R3 中一个正则参数曲面,这里 r 是两个变量的光滑向量值函数。通常记 r 关于 α 的偏导数为 rα,α = 1,2。参数化的正则性意味着 r1 与 r2 在 r 的定义域上是线性无关的,从而在每一点张成 S 的切空间。等价地,叉积 r1 × r2 是曲面的一个非零法向量。这样参数化定义了一个单位法向量场 n:

第二基本形式通常写作

上式使用了爱因斯坦求和约定。

在参数 (1, 2)-曲面给定点处系数 αβ 由 r 的二次偏导数到 的法线的投影给出,利用点积可写成:

在欧几里得空间中,第二基本形式由

给出,这里 ν {\displaystyle \nu } )的等价方法,

这里 v w {\displaystyle \nabla _{v}w} 超曲面上一个法向量场。如果仿射联络是无挠的,则第二基本形式是对称的。

第二基本形式的符号取决于 的方向的选取。(这称为曲面的余定向,对欧几里得空间中的曲面,等价于给定曲面的一个定向)。

第二基本形式可以推广到任意余维数。在这种情形下,它是切空间上取值于法丛的一个二次型,可以定义为

这里 ( v w ) {\displaystyle (\nabla _{v}w)^{\bot }} 是嵌入黎曼流形 (,) 中一个流形,则 在诱导度量下的曲率张量 R N {\displaystyle R_{N}} 的曲率张量 R M {\displaystyle R_{M}} 表示出来:


相关

  • 肾功能衰竭肾功能衰竭(英语:renal failure、kidney failure,或renal insufficiency),又简称肾衰竭,是指因肾病变,造成肾脏出现问题导致未能有效带走血液中的杂质,继而影响身体的代谢,严重者可致
  • 两栖类两栖动物(学名:Amphibia)是两栖纲生物的通称,又名两生动物,包括所有生没有卵壳的卵,拥有四肢的脊椎动物(蚓螈的四肢已退化)。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分
  • 真灵长大目真灵长大目(Euarchonta)是灵长总目的一个演化支,包含了树鼩目、皮翼目、灵长目及史前的更猴目。灵长动物又译为真统兽大目(“Euarchonta”意为“真正的始祖或先驱”),这个分类是于
  • 左营坐标:22°41′13.54″N 120°17′30.67″E / 22.6870944°N 120.2918528°E / 22.6870944; 120.2918528左营区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-syst
  • 家蚕(学名:Bombyx mori)是鳞翅目的昆虫,丝绸的主要原料来源,在人类经济生活及文化历史上占有重要地位。原产中国,华南地区俗称之蚕宝宝或娘仔。家蚕的英文名为“silkworm”(意为“
  • 大孔班山大孔班山(Grand Combin)是阿尔卑斯山脉的山峰,位在瑞士境内,海拔4,314米。魏斯峰是本宁阿尔卑斯山脉的一部分,位于瓦莱州。
  • 满汉通婚旗民不通婚,亦称旗汉不通婚、满汉不通婚、旗民不结亲等,指的是清朝旗人甚少与民人互为结亲的习俗。因常以满洲人指代旗人,故直到今天,民间仍然习惯称这段历史为“满汉不通婚”。
  • 卡洛斯·格雷西卡洛斯·格雷西(葡萄牙语:Carlos Gracie,1902年9月14日-1994年10月7日),生于巴西贝伦,为格雷西家族的长子。他与他的兄弟艾里奥·格雷西等人,发展出格雷西柔术这门武术。卡洛斯的父
  • 西西里三重奏团意大利西西里三重奏是欧洲著名的室内乐团之一,更是活跃在当今古典音乐界为数不多的单簧管合奏团。乐团由出生于意大利西西里岛音乐世家的著名钢琴家Salvatore Percacciolo于2
  • 黄春生黄春生可以指: