微分包含式

✍ dations ◷ 2025-11-28 18:45:42 #微分包含式

数学分析中的微分包含式(Differential inclusion)是指具有如下形式的常微分方程式:

其中(, )表示了一个集合,而非 R d {\displaystyle \scriptstyle {\mathbb {R} }^{d}} ,方向与滑动方向相反,其中是正向力,是摩擦系数。然而,在一个动态问题中,物体滑动量为0时受到的摩擦力可以是相应的受力平面内的小于等于任意的力,在这种情形下表示摩擦力与物体的位置、速度的函数关系就需要采用多值函数。

现有的关于微分包含式的理论通常假定 (, ) 是关于 的“上半侧连续”函数,可测,且 (, ) 对于所有的、都是闭合的凸集。

在以上假定的条件下,有关于初值问题:

的解的存在定理。若对作进一步约束,可以得到全局状况下的解的存在定理 ( x ( t ) {\displaystyle \scriptstyle \Vert x(t)\Vert \,\to \,\infty } (, ) 是非凸的集合时,相应的微分包含式的解的存在定理是目前的一个研究热点。

微分包含式可以被适宜地理解为非连续的常微分方程,它出现在力学系统中对动态摩擦力的研究,以及电力电子领域中对理想开关的研究等。

相关

  • 中国科学院微生物研究所中国科学院微生物研究所是中国科学院下属研究所,于1958年由中国科学院应用真菌研究所和北京微生物研究室合并成立,现位于北京市朝阳区北辰西路中国科学院奥运村园区。以微生物
  • 黑土黑钙土(英语:Chernozem),名字源于俄罗斯语,意指“黑色的土”,又称“黑土”。由于含有大量的磷酸、腐植质、磷、氨、镁、还有钙等矿物质,黑钙土在农业上是属于一种上好的土质,农产量
  • 千鸟格纹千鸟格纹,英文称犬牙houndstooth, hound's tooth, 或 dogstooth, dogtooth, pied-de-poule等,是一个由破碎格纹或四角形状组成的双色纺织花纹,通常是黑色和白色相间,但也有使用
  • 利文斯顿利文斯顿、李文斯顿、利文斯通、李维顿(Livingstone、Livingston)可以指:
  • span class=nowrapCuBHsub4/sub/span硼氢化亚铜,又称硼氢化铜(I),是一种无机化合物,分子式为CuBH4。1964年,Klingen用氯化铜和硼氢化锂为原料,在-45℃的乙醚中反应,产生白色不挥发的化合物CuBH4:硼氢化亚铜极不稳定,在-
  • 原州原州市(朝鲜语:원주시/原州市 Wonju si */?)是韩国江原道的一座城市,人口32万多(2013年)。该市与江陵市共组成江原道地名当中“江”“原”两字的来源。以下列出原州市建市以来各
  • 台湾鸟类列表台湾在世界动物地理分区上属于东洋区和旧北区的交会地带,有87科653种鸟类曾被记录,其中有29种为台湾特有种。台澎地区和金马地区的鸟类生态有相当程度的差异,请另见金门鸟类列
  • 苏联国歌《苏维埃社会主义共和国联盟国歌》(俄语:Государственный гимн СССР,罗马字转写:Gosudarstvenny Gimn SSSR)是苏联的国歌,其中文非正式曲名又依首句为《牢
  • 基沙普基萨普县(英语:Kitsap County)是位于美国华盛顿州基萨普半岛北部、普吉特湾西岸的一个县。根据美国2010年人口普查,共有人口251,133人。县治奥查德港,最大城市布雷默顿。该县于于
  • 高跟鞋高跟鞋是指鞋跟特别高的鞋,会使穿此鞋的人的脚跟明显高于脚趾以及身高上的错觉。高跟鞋有许多种不同的款式,尤其是在鞋跟的变化上更是非常多,如细跟、粗跟、楔型跟、钉型跟、槌