布洛赫球面

✍ dations ◷ 2025-04-03 12:22:05 #布洛赫球面
量子力学中,以自旋物理与核磁共振专家费利克斯·布洛赫(Felix Bloch)姓氏命名的布洛赫球面是一种对于双态系统中纯态空间的几何表示法。在讨论量子比特的场合上常常运用到。对量子比特这样的双态量子系统而言,其存在的可能状态 | ψ ⟩ {displaystyle |psi rangle } (采用狄拉克标记的右矢表示)可以由两个互相正交的基底以复数线性叠加所构成,这两个基底可以选用 | 0 ⟩ {displaystyle |0rangle } 和 | 1 ⟩ {displaystyle |1rangle } 为代表。在物理实现上, | 0 ⟩ {displaystyle |0rangle } 和 | 1 ⟩ {displaystyle |1rangle } 代表了做投影式量子测量所会得到的唯二结果。从任意纯态出发: | ψ ⟩ = α | 0 ⟩ + β | 1 ⟩ {displaystyle |psi rangle =alpha ,|0rangle +beta ,|1rangle } ,其中 α , β ∈ C , | α | 2 + | β | 2 = 1 {displaystyle alpha ,beta in mathbb {C} ,quad |alpha |^{2}+|beta |^{2}=1,} 。故可设:其中 e i δ {displaystyle e^{idelta },} 称作共同相位(global phase),因为对 | 0 ⟩ {displaystyle |0rangle } 、对 | 1 ⟩ {displaystyle |1rangle } 都一样影响,而在实验上测量不出来,故可以将之舍弃不看。至于相对相位(relative phase) e i ϕ {displaystyle e^{iphi },} 就不同了,它的影响可以在球面上表现出来。故得:可以看到 | 0 ⟩ {displaystyle |0rangle } 的系数 cos ⁡ θ {displaystyle cos theta ,} 是实数,并且 cos ⁡ θ {displaystyle cos theta ,} 在原先 α = cos ⁡ θ e i δ {displaystyle alpha =cos theta ,e^{idelta },} 所代表的是复数 α {displaystyle alpha ,} 的长度(模、幅值,amplitude),故 cos ⁡ θ {displaystyle cos theta ,} 结果要是非负实数; sin ⁡ θ {displaystyle sin theta ,} 亦是如此道理。故可定出 θ {displaystyle theta ,} 与 ϕ {displaystyle phi ,} 的范围如下:将 2 θ {displaystyle 2theta ,} 和 ϕ {displaystyle phi ,} 的所有分布在三维空间 R 3 {displaystyle mathbb {R} ^{3}} 中画出来,就可以得到一个球面,此即布洛赫球面,如同图1。可以注意到正交(有“垂直,呈90度关系”的意思)的两个基底 | 0 ⟩ {displaystyle |0rangle } 和 | 1 ⟩ {displaystyle |1rangle } 在此几何表示法下成为一轴的两端,变成180度关系( 2 θ {displaystyle 2theta ,} 的缘故)。通常设置它们处在 z {displaystyle z,} 轴,即:离球心距离皆是1。有些学者及书刊对于球面所采用的表示为:角度范围:是故,其状态 | ψ ⟩ {displaystyle |psi rangle } 的定义为:此种表示法的用意在使布洛赫球面上 ( θ , ϕ ) {displaystyle (theta ,phi ),} 表示方式和一般 R 3 {displaystyle mathbb {R} ^{3}} 中的球面以球坐标 ( r 0 , θ , ϕ ) {displaystyle (r_{0},theta ,phi ),} 表示方式一致。布洛赫球(Bloch ball)是布洛赫球面的扩展,混合态(mixed state)会出现在球内(离球心距离<1的点)而不是球面上。并可从此推论出球心该点所代表的量子状态是最大混合态(maximally mixed state),用密度矩阵形式及狄拉克标记表示即(另见“量子比特”):可以看到这是两个彼此正交的纯态以恰好一半一半的比例构成混合态。

相关

  • 南亚南亚(英语:South Asia)是术语,以替换百年老词“印度次大陆”,这老词用来代表亚洲大陆的南部地区,主要是位于印度板块和向南投射到印度洋的地方。是亚洲的一个亚区(英语:subregion),泛
  • 南北战争(4年3周6日) (最后一枚炮弹于1865年6月22日发射)联邦胜利亚伯拉罕·林肯埃德温·M·斯坦顿尤利西斯·S·格兰特 威廉·T·舍曼 大卫·法拉格特 乔治·B·麦克莱伦 亨利·韦
  • PET正电子发射计算机断层扫描(英语:Positron emission tomography,简称PET)是一种核医学临床检查的成像技术。PET技术是当前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具
  • 地佐辛地佐辛是一种具有镇痛作用的精神药物,一般在临床上采用肌肉或静脉注射的方式施药。常用于手术后镇痛以及由内脏、癌症引发的疼痛。该药剂药效比哌替啶强、成瘾性小、注射后十
  • 田昭武田昭武(1927年6月-),中国著名电化学家,福建省福州市螺洲人。著名物理化学家田中群之父。先后就读于福建师院附属第二小学、福州第一中学、永安中学和厦门大学化学系。毕业后留校,
  • 凯文·林奇凯文·林奇(英语:Kevin Andrew Lynch,1918年1月7日-1984年4月25日)是一位美国城市规划师和作家,以其在城市环境的感知形式方面的工作而闻名,并且是心理地图(英语:Mental mapping)的早
  • 迈克尔·阿蒂亚迈克尔·弗朗西斯·阿蒂亚爵士,OM,FRS(英语:Sir Michael Francis Atiyah,1929年4月22日-2019年1月11日),英国黎巴嫩裔数学家,主要研究领域为几何,被誉为当代最伟大的数学家之一。阿蒂
  • 正常窦性节律在一周期的心脏律动中,如果心肌的去极化从窦房结开始,则称为窦性心律(英文:sinus rhythm)。其特点是心电图(ECG)中展示方向正确的P波(英语:P wave (electrocardiography))。窦性心律是
  • 语义关系语义角色(英语:Semantic roles),又称语义关系、主题关系(thematic relations),生成语法中称为题元或题元角色(θ-roles),在格语法中也称为语义格或深层格,是语义学上的一个概念,指短语或
  • 风湿性关节炎医学上没有风湿性关节炎(Rheumatic arthritis)之诊断,此名词被使用时,可能是下列状况: