光遗传学

✍ dations ◷ 2025-09-19 10:28:52 #光学,遗传学

光遗传学融合光学及遗传学的技术,精准控制特定细胞在空间与时间上的活动。其时间上精准程度可达到毫秒,而空间上则能达到单一细胞大小。2010年光遗传学被Nature Methods选为年度方法 ,同年被Science认为是近十年来的突破之一 。这两个期刊也分别在Youtube影片及科学美国人文章里以科普的方式解释何谓光遗传学。

1979年弗朗西斯·克里克首次提出,为了了解大脑如何运作,我们需要一种方法,可以每次只让某一特定型态神经元活动被抑制,而不影响其他神经元的活动。然而就当时技术,利用侵入性电极来控制神经活动,没有办法准确控制哪些神经元被抑制或活化,而利用药物或者基因突变,虽然可以大致知道哪些神经元被影响,却没办法精准地控制何时这些神经元被抑制或活化。其后,许多人尝试将各式各样的基因或化合物结合在一起,希望其能表现在神经元里,利用光来控制神经元活动。这些方法虽然有效,但其在控制神经元活动的速度,标的神经元的精准度,能否表现在深层神经组织,对生物体是否有毒性,以及是否能简易地应用在其他模式生物系统等等考量上,往往并非理想,因而尝试几年之后,科学家转而思考,是否有办法找到在自然界中本身便对光有反应,并且能调控细胞电位的蛋白质。

然而其实早在1973年,微生物学家便发现细菌视紫质(英语:Bacteriorhodopsin)照光之后会成为离子转运蛋白(英语:ion transporter),1977年发现盐细菌视紫红质(英语:Halorhodopsin)也是离子转运蛋白(英语:ion transporter),照黄绿光后会将氯离子打出细胞外,随后在2002年发现光敏感通道(英语:channelrhodopsin),照蓝光之后会将阳离子打进细胞内。

到了2005年八月,科学家第一次将光敏感通道(英语:channelrhodopsin)表现在神经元里,发现我们可以用蓝光准确控制何时活化神经元,而光遗传学一词也在此时出现。随后发现细菌视紫质(英语:Bacteriorhodopsin)与盐细菌视紫红质(英语:Halorhodopsin)也都能在神经元表现,准确调控其活动,并对神经元不产生毒害,至此之后,光遗传学迅速改变神经生物学界,成为了解特定神经元在大脑中扮演何种角色,不可或缺的工具。

光敏感通道-1(Channelrhodopsin-1)及光敏感通道-2(Channelrhodopsin-2)皆从莱茵衣藻(英语:Chlamydomonas reinhardtii)里发现,将其基因序列修改成最适合哺乳类表达之后,在大多模式生物系统之中都有很稳定的表达,且对细胞没有毒性。其中光敏感通道-2在全反式视黄醛(all- retinal)存在之下,可以在接受蓝光刺激,并在50毫秒内,打开通道,使阳离子钠、钾流入细胞内,引起神经细胞去极化。不同的突变使光敏感通道-2有不同的特质,其中最常见的是将第134位的氨基酸由组胺酸突变为精胺酸(ChR2(H134R)),该蛋白质可以产生两倍的光电流,但通道开关速度也比野生种慢了一倍。

在此之后,各式光遗传学工具纷纷出炉,大致上依其组成型态可分成三类。一类为以光敏感通道-2为基础,对其进行点突变,如上述的ChR2(H134R)、ChR2(T159C)(TC)、ChR2(L132C)(CatCh)等等,其中甚至有被称为跃阶光敏感通道(step function opsin, SFO)的突变,如ChR2(C128S/D156A)可以打开其离子通道长达30分钟。第二类则为将某部分光敏感通道-1及光敏感通道-2组合在一起的蛋白质,如ChIEF。第三类则为将光敏感通道-1及由团藻发现的光敏感通道(VChR1)组合在一起的蛋白质,统称为C1V1。

第一个有效抑制神经元活动的光遗传学工具,是从嗜盐碱菌(英语:Natromonas)里头发现的盐系菌视紫红质(英语:halorhodopsin),简称NpHR。其在黄绿光照射下会将氯离子打进神经元内,使其过极化,而抑制神经元活动。随后科学家将其加上信号肽,使其能在细胞膜上表现更好,即为eNpHR2.0及eNpHR3.0。由于盐系菌视紫红质与光敏感通道接受不同波长的光,因此可以将此二蛋白质表现在同一神经元上,利用不同波长的光活化或抑制该神经元活动,而能更深刻了解该神经元在大脑中扮演的角色。

此外还有从苏打盐红菌(英语:Halorubrum)里发现的古紫质(Archaerhodopsin-3, Arch),古紫质为反质子泵,其对黄绿光非常敏感,使用900毫安培的黄绿光便能活化,将氢离子运送至神经元外,使其去极化。另外还有从真菌茎基溃疡病菌(英语:Leptosphaeria maculans)发现的Mac,可在蓝绿光照射下,将氢离子运送至神经元外。

值得注意的是,NpHR与Arch或Mac用不同机转来抑制神经元活动,近来发现NpHR将氯离子送至细胞内所导致的去极化,会在去极化后提升突触所引起的动作电位产生几率,而将氢离子运送至神经元外的Arch或Mac并无此影响,显示抑制神经元活动的光遗传学工具,可能会和神经原本身的讯号系统互相作用。

秀丽隐杆线虫因其全身透明,基因克隆技术简单,且其神经网络如何连结大致已被界定,很适合利用光遗传学来研究其神经网络如何控制行为。研究显示光敏感通道-2、盐系菌视紫红质(英语:halorhodopsin)、古紫质(Archaerhodpsin-3, Arch)均能在秀丽隐杆线虫上表现,控制神经元活动。在固定的秀丽隐杆线虫,科学家首次把光遗传学和钙离子成像技术结合起来研究神经元的连接。许多科学研究已经能成功在自由移动的秀丽隐杆线虫,利用光学技术,控制特定神经元活动。利用光遗传学技术,现在研究已经了解部分痛觉网络的神经元扮演的角色,发现控制特定神经元活动得以使秀丽隐杆线虫转弯、后退,甚至沿着虚拟光梯度前行。

相关

  • 体香剂体香剂是一类作用在人体皮肤上的物质,来减低因排汗而产生的体味。出汗之所以有异味是因为汗液中包含了人体中分泌的水、氨基酸、脂质等物质,细菌在汗液的环境下极易繁殖,并分解
  • 酸杆菌科酸杆菌门(Acidobacteria)是新近被分出的一门细菌。它们是嗜酸菌。现在对它们研究还很少,但它们在生态系统中具有重要作用,比如土壤中。
  • 利昂·莱德曼利昂·马克斯·莱德曼(英语:Leon Max Lederman,1922年7月15日-2018年10月3日),美国物理学家,1988年诺贝尔物理学奖获得者。生于纽约1946年进入哥伦比亚大学物理系读研究生,1951年获
  • 周日邮报《星期日邮报》(The Mail on Sunday)是英国一份保守主义报纸,以小报版式出版。它是由罗瑟米尔爵士(英语:Vere Harmsworth, 3rd Viscount Rothermere)于1982年创办,而它的姊妹报《每
  • 横须贺横须贺空袭为1945年7月18日太平洋战争尾声阶段美国海军发动的空袭行动,主要目标为日本横须贺海军工厂中的长门号战列舰,但工厂内的防空设施及其他战舰亦受袭击。美国海军及英
  • 乔晓光乔晓光可以指:
  • 纯色獴纯色獴(学名Salanoia concolor),也叫棕尾獴,食肉目獴科的一种,只分布于非洲马达加斯加岛上。
  • 好氧生物好氧生物(英语:Aerobic organism,或 aerobe),又译为好气生物、耗氧生物、需氧生物,是能在有氧的环境中生存及生长的生物。好氧生物利用氧的化学反应来分解糖及脂肪,以获得能量。几
  • 生糖氨基酸生糖氨基酸(英语:glucogenic amino acid)是指在体内能转化生成葡萄糖、糖原的氨基酸。生糖氨基酸有15种:丙氨酸、甘氨酸、丝氨酸、苏氨酸、半胱氨酸、谷氨酸、谷氨酰胺、精氨酸
  • 电子亲合能在一般化学与原子物理学中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定义是,将使一个电子脱离一个气态的离子或分子所需耗费,或是释出的能量。在固体物理学之