光遗传学

✍ dations ◷ 2025-11-06 15:48:33 #光学,遗传学

光遗传学融合光学及遗传学的技术,精准控制特定细胞在空间与时间上的活动。其时间上精准程度可达到毫秒,而空间上则能达到单一细胞大小。2010年光遗传学被Nature Methods选为年度方法 ,同年被Science认为是近十年来的突破之一 。这两个期刊也分别在Youtube影片及科学美国人文章里以科普的方式解释何谓光遗传学。

1979年弗朗西斯·克里克首次提出,为了了解大脑如何运作,我们需要一种方法,可以每次只让某一特定型态神经元活动被抑制,而不影响其他神经元的活动。然而就当时技术,利用侵入性电极来控制神经活动,没有办法准确控制哪些神经元被抑制或活化,而利用药物或者基因突变,虽然可以大致知道哪些神经元被影响,却没办法精准地控制何时这些神经元被抑制或活化。其后,许多人尝试将各式各样的基因或化合物结合在一起,希望其能表现在神经元里,利用光来控制神经元活动。这些方法虽然有效,但其在控制神经元活动的速度,标的神经元的精准度,能否表现在深层神经组织,对生物体是否有毒性,以及是否能简易地应用在其他模式生物系统等等考量上,往往并非理想,因而尝试几年之后,科学家转而思考,是否有办法找到在自然界中本身便对光有反应,并且能调控细胞电位的蛋白质。

然而其实早在1973年,微生物学家便发现细菌视紫质(英语:Bacteriorhodopsin)照光之后会成为离子转运蛋白(英语:ion transporter),1977年发现盐细菌视紫红质(英语:Halorhodopsin)也是离子转运蛋白(英语:ion transporter),照黄绿光后会将氯离子打出细胞外,随后在2002年发现光敏感通道(英语:channelrhodopsin),照蓝光之后会将阳离子打进细胞内。

到了2005年八月,科学家第一次将光敏感通道(英语:channelrhodopsin)表现在神经元里,发现我们可以用蓝光准确控制何时活化神经元,而光遗传学一词也在此时出现。随后发现细菌视紫质(英语:Bacteriorhodopsin)与盐细菌视紫红质(英语:Halorhodopsin)也都能在神经元表现,准确调控其活动,并对神经元不产生毒害,至此之后,光遗传学迅速改变神经生物学界,成为了解特定神经元在大脑中扮演何种角色,不可或缺的工具。

光敏感通道-1(Channelrhodopsin-1)及光敏感通道-2(Channelrhodopsin-2)皆从莱茵衣藻(英语:Chlamydomonas reinhardtii)里发现,将其基因序列修改成最适合哺乳类表达之后,在大多模式生物系统之中都有很稳定的表达,且对细胞没有毒性。其中光敏感通道-2在全反式视黄醛(all- retinal)存在之下,可以在接受蓝光刺激,并在50毫秒内,打开通道,使阳离子钠、钾流入细胞内,引起神经细胞去极化。不同的突变使光敏感通道-2有不同的特质,其中最常见的是将第134位的氨基酸由组胺酸突变为精胺酸(ChR2(H134R)),该蛋白质可以产生两倍的光电流,但通道开关速度也比野生种慢了一倍。

在此之后,各式光遗传学工具纷纷出炉,大致上依其组成型态可分成三类。一类为以光敏感通道-2为基础,对其进行点突变,如上述的ChR2(H134R)、ChR2(T159C)(TC)、ChR2(L132C)(CatCh)等等,其中甚至有被称为跃阶光敏感通道(step function opsin, SFO)的突变,如ChR2(C128S/D156A)可以打开其离子通道长达30分钟。第二类则为将某部分光敏感通道-1及光敏感通道-2组合在一起的蛋白质,如ChIEF。第三类则为将光敏感通道-1及由团藻发现的光敏感通道(VChR1)组合在一起的蛋白质,统称为C1V1。

第一个有效抑制神经元活动的光遗传学工具,是从嗜盐碱菌(英语:Natromonas)里头发现的盐系菌视紫红质(英语:halorhodopsin),简称NpHR。其在黄绿光照射下会将氯离子打进神经元内,使其过极化,而抑制神经元活动。随后科学家将其加上信号肽,使其能在细胞膜上表现更好,即为eNpHR2.0及eNpHR3.0。由于盐系菌视紫红质与光敏感通道接受不同波长的光,因此可以将此二蛋白质表现在同一神经元上,利用不同波长的光活化或抑制该神经元活动,而能更深刻了解该神经元在大脑中扮演的角色。

此外还有从苏打盐红菌(英语:Halorubrum)里发现的古紫质(Archaerhodopsin-3, Arch),古紫质为反质子泵,其对黄绿光非常敏感,使用900毫安培的黄绿光便能活化,将氢离子运送至神经元外,使其去极化。另外还有从真菌茎基溃疡病菌(英语:Leptosphaeria maculans)发现的Mac,可在蓝绿光照射下,将氢离子运送至神经元外。

值得注意的是,NpHR与Arch或Mac用不同机转来抑制神经元活动,近来发现NpHR将氯离子送至细胞内所导致的去极化,会在去极化后提升突触所引起的动作电位产生几率,而将氢离子运送至神经元外的Arch或Mac并无此影响,显示抑制神经元活动的光遗传学工具,可能会和神经原本身的讯号系统互相作用。

秀丽隐杆线虫因其全身透明,基因克隆技术简单,且其神经网络如何连结大致已被界定,很适合利用光遗传学来研究其神经网络如何控制行为。研究显示光敏感通道-2、盐系菌视紫红质(英语:halorhodopsin)、古紫质(Archaerhodpsin-3, Arch)均能在秀丽隐杆线虫上表现,控制神经元活动。在固定的秀丽隐杆线虫,科学家首次把光遗传学和钙离子成像技术结合起来研究神经元的连接。许多科学研究已经能成功在自由移动的秀丽隐杆线虫,利用光学技术,控制特定神经元活动。利用光遗传学技术,现在研究已经了解部分痛觉网络的神经元扮演的角色,发现控制特定神经元活动得以使秀丽隐杆线虫转弯、后退,甚至沿着虚拟光梯度前行。

相关

  • 超氧化物超氧化物(英语:Superoxide)是含有超氧离子(超氧根离子,O2−)的一类化合物,是氧气分子的单电子还原产物,广泛存在于自然界中。超氧离子是一个自由基,一个氧原子带有一个未成对电子,与氧
  • 汉尼斯·阿尔文汉尼斯·奥洛夫·哥斯达·阿尔文(瑞典语:Hannes Olof Gösta Alfvén,1908年5月30日-1995年4月2日),瑞典等离子体物理学家、天文学家,致力于磁流体动力学领域的研究,其成果被广泛应
  • 硫酸根硫酸根的化学式SO42−,是硫酸二级电离出的负离子。在水中溶解的硫酸根离子是由于硫酸或可溶性硫酸盐溶于水产生的。硫酸是强电解质,溶于水会迅速发生二级电离,产生两个氢离子和
  • 科尼卡科尼卡国家森林(英语:Conecuh National Forest)是美国的一处国家森林,1936年7月17日建立,位处亚拉巴马州,占地面积83,861英亩(339.37平方千米),最近的城市为安达卢西亚。森林名字据说
  • 弦是一个几何术语,也是一个图论概念。在几何学中,若一线段的两个端点都在曲线上,则该线段称作该曲线的弦。圆的任何弦的垂直平分线都会通过圆心。弦不可以指直角三角形上的斜边
  • 銮披汶·颂堪贝·銮披汶颂堪陆军元帅(泰语:แปลก พิบูลสงคราม;RTGS:Plaek Phibunsongkhram;IPA:;1897年7月14日-1964年6月12日),曾任泰国总理(1938年—1944年,1948年—1957年),泰国军人
  • 狐属狐属(学名:Vulpes)是犬科动物下的一个属,其中包括的各种“真”狐狸,其他属也有一些种类被称为“狐”的。狐属动物和犬科其他动物相比,如狼、郊狼、黑背豺等,体形要小一些,颅骨较平坦
  • 布伦纳氏腺布伦纳氏腺是位于十二指肠壁的一种外分泌腺,负责分泌弱碱性的碳酸氢盐,以中和来自胃的酸性食糜。
  • 十九烷十九烷是一种有机化合物,一种化学式为C19H40的烷烃,室温下为固体。
  • 意诺增爵十三世教宗意诺增爵十三世(拉丁语:Innocentius PP. XIII;1655年5月13日-1724年3月7日)原名弥额尔-安杰洛·孔蒂(Michelangelo Conti),1721年5月8日当选罗马主教,同年5月18日即位至1724年3月