古埃及分数

✍ dations ◷ 2025-04-04 11:25:19 #数论,算术,分数,埃及数学

古埃及的分数是不同的单位分数的和,就是分子为1,分母为各不相同的正整数。任何正有理数都能表达成这一个形式。

古埃及分数的表达形式不是唯一的,还未找到一个算法总是给出最短的形式。

贪婪算法:将一项分数分解成若干项单分子分数后的项数最少,称为第一种好算法;最大的分母数值最小,称为第二种好算法。例如:

2 7 = 1 4 + 1 28 {\displaystyle {\frac {2}{7}}={\frac {1}{4}}+{\frac {1}{28}}} 。共2项,是第一种好算法,比 2 7 = 1 5 + 1 20 + 1 28 {\displaystyle {\frac {2}{7}}={\frac {1}{5}}+{\frac {1}{20}}+{\frac {1}{28}}} 的项数要少。

又例如, 5 121 = 1 33 + 1 121 + 1 363 {\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}} 5 121 = 1 25 + 1 759 + 1 208725 {\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{759}}+{\frac {1}{208725}}} 的最大分母要小,所以是第二种好算法。

例子:把 19 20 {\displaystyle {\frac {19}{20}}} 转成单位分数。

所以结果是:

詹姆斯·约瑟夫·西尔维斯特和斐波那契都提出过以上的方法。

这个算法是基于贝祖等式的:当 a {\displaystyle a} , b {\displaystyle b} 互质, a x b y = 1 {\displaystyle ax-by=1} 有无穷多对正整数解 ( x , y ) {\displaystyle (x,y)}

选取最小的正整数解 ( m , n ) {\displaystyle (m,n)} 。取单位分数分母为 b m {\displaystyle bm} ,重复步骤。

7 10 {\displaystyle {\frac {7}{10}}} 为例:

最基本的方法就是将分数写成二进制数,便能将该分数写成分母为二的幂的单位分数之和。

换个说法就是重复求最小的正整数 n {\displaystyle n} 使得 x y > 1 2 n {\displaystyle {\frac {x}{y}}>{\frac {1}{2^{n}}}}

这个方法的效率很低。

一个改善之道是选取正整数 n {\displaystyle n} 使得 ( 2 n × x ) mod y < 2 n + 1 {\displaystyle (2^{n}\times x){\bmod {y}}<2^{n+1}} 。选取适当的正整数 r , s {\displaystyle r,s} r < y {\displaystyle r<y} )使得 2 n × x = s y + r {\displaystyle 2^{n}\times x=sy+r} x y = s 2 n + r 2 n × y {\displaystyle {\frac {x}{y}}={\frac {s}{2^{n}}}+{\frac {r}{2^{n}\times y}}} 。将 s 2 n , r 2 n {\displaystyle {\frac {s}{2^{n}}},{\frac {r}{2^{n}}}} 写成二进制数。

例如: 18 23 {\displaystyle {\frac {18}{23}}}

将一个分数表示成未必相异的单位分数之和。若有两个单位分数相同,可以用以下其中一种处理方式:

或是 1 n = 1 n + 1 + 1 n ( n + 1 ) {\displaystyle {\frac {1}{n}}={\frac {1}{n+1}}+{\frac {1}{n(n+1)}}} n {\displaystyle n} 可等于任意正整数

1 n {\displaystyle {\frac {1}{n}}} 表示成为一个级数形式:

1 n = 1 n + 1 + 1 ( n + 1 ) 2 + 1 ( n + 1 ) 3 + 1 ( n + 1 ) 4 + . . . + 1 ( n + 1 ) k + 1 n ( n + 1 ) k {\displaystyle {\frac {1}{n}}={\frac {1}{n+1}}+{\frac {1}{(n+1)^{2}}}+{\frac {1}{(n+1)^{3}}}+{\frac {1}{(n+1)^{4}}}+...+{\frac {1}{(n+1)^{k}}}+{\frac {1}{n(n+1)^{k}}}}


数学史家有时论述代数的发展分为三个基本阶段:

未知数以符号形式通常记为。我们从古埃及文稿得知,埃及祭司和书记采用文字代数的方式,以一个解为“堆”或“集”的字“阿哈”来表示未知数。

这是现存在伦敦的大英博物馆的莱因德数学纸草书(第二中间期)所载,其中一个阿哈问题的翻译:

“问题24: 一个数量和它的 1 7 {\displaystyle {\frac {1}{7}}} 加起来是19。这数量是什么?”

“假设是7。7和7的 1 7 {\displaystyle {\frac {1}{7}}} 是8。8要乘上多少倍以得到19,7也要乘上这样多倍以得到所要的数量。”

以现在的符号形式, x + x 7 = 8 x 7 = 19 {\displaystyle x+{\frac {x}{7}}={\frac {8x}{7}}=19} ,故此 x = 133 8 {\displaystyle {x}={\frac {133}{8}}} 。检查: 133 8 + 133 7 × 8 = 133 8 + 19 8 = 152 8 = 19 {\displaystyle {\frac {133}{8}}+{\frac {133}{7\times 8}}={\frac {133}{8}}+{\frac {19}{8}}={\frac {152}{8}}=19}

注意问题中的分数。古埃及人以单位分数计算,如 1 2 , 1 3 , 1 4 , 1 10 {\displaystyle {\frac {1}{2}},{\frac {1}{3}},{\frac {1}{4}},{\frac {1}{10}}}

一个形状如开口的象形文字是表记分数的符号,这“开口”下有象形文字的数字就是分数的分母。

相关

  • 腕足动物门见内文腕足动物门(学名:Brachiopoda)是动物界的一个门,属于底栖、有一对硬壳的触手冠海产动物。但与双壳类动物不同的是:其壳是上、下开合,而不是左、右开合。铰位在后背部,而前方
  • N-乙酰-D-氨基葡萄糖N-乙酰葡糖胺(GlcNAc;NAG)是葡糖胺的N-乙酰衍生物,分子式C8H15NO6。NAG与NAM为组成细菌细胞壁的单体,与葡糖醛酸为透明质酸的单体。NAG也是甲壳素的聚合单体。细菌疾病 · 科莱
  • 纳撒尼尔·霍桑纳撒尼尔·霍桑(Nathaniel Hawthorne,1804年7月4日-1864年5月19日),19世纪美国小说家,其代表作品《红字》为世界文学的经典之一。霍桑出生于美国马萨诸塞州塞勒姆镇。他的曾曾祖父
  • 科学共识科学共识(英文: Scientific consensus)是某个学科领域的科学家群体共同作出的判断、立场及意见。科学共识意味着对某些看法普遍的认同,但不一定是毫无异议的。科学共识通常是透
  • 摩洛哥华人摩洛哥华人,是摩洛哥社会一个小社团,人数3000人,多从事零售和批发业。中国商人多聚集在卡萨布兰卡最大的商业区之一Derb奥马尔,唐人街已经出现。在这个区商家经营小型零售店铺,美
  • 秋元优里秋元优里(1983年10月25日-),出身于东京都。日本富士电视台新闻播报员。父亲秋元义孝是外交官,是现任日本驻澳洲大使;妹妹秋元玲奈是东京电视台的播报员。由于父亲工作的缘故,小学二
  • 哈里·辛格哈里·辛格(1895年9月25日-1961年4月26日)印度查谟-克什米尔土邦多格拉王朝末代王公,印度教徒,而其领土内大部分居民为伊斯兰教教徒。1947年印度独立时,辛格犹豫不决,又希望能保持
  • 惠灵顿 (肯塔基州)惠灵顿(英语:Wellington)是一个美国城市,位于肯塔基州杰斐逊郡。根据2010年的人口普查,当地人口为565人。惠灵顿位于38°13′0″N 85°40′12″W / 38.21667°N 85.67000°W / 38
  • 海因茨·古德里安海因茨·威廉·古德里安(德语:Heinz Wilhelm Guderian,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unico
  • 碧雅翠丝·波特的世界碧雅翠丝·波特的世界(英语:The World of Beatrix Potter)是位于英国坎布里亚郡湖区鲍内斯的博物馆,以碧雅翠丝·波特的彼得兔系列作为展出主题。该博物馆是湖区最受欢迎的景点