古埃及分数

✍ dations ◷ 2025-06-08 17:06:36 #数论,算术,分数,埃及数学

古埃及的分数是不同的单位分数的和,就是分子为1,分母为各不相同的正整数。任何正有理数都能表达成这一个形式。

古埃及分数的表达形式不是唯一的,还未找到一个算法总是给出最短的形式。

贪婪算法:将一项分数分解成若干项单分子分数后的项数最少,称为第一种好算法;最大的分母数值最小,称为第二种好算法。例如:

2 7 = 1 4 + 1 28 {\displaystyle {\frac {2}{7}}={\frac {1}{4}}+{\frac {1}{28}}} 。共2项,是第一种好算法,比 2 7 = 1 5 + 1 20 + 1 28 {\displaystyle {\frac {2}{7}}={\frac {1}{5}}+{\frac {1}{20}}+{\frac {1}{28}}} 的项数要少。

又例如, 5 121 = 1 33 + 1 121 + 1 363 {\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}} 5 121 = 1 25 + 1 759 + 1 208725 {\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{759}}+{\frac {1}{208725}}} 的最大分母要小,所以是第二种好算法。

例子:把 19 20 {\displaystyle {\frac {19}{20}}} 转成单位分数。

所以结果是:

詹姆斯·约瑟夫·西尔维斯特和斐波那契都提出过以上的方法。

这个算法是基于贝祖等式的:当 a {\displaystyle a} , b {\displaystyle b} 互质, a x b y = 1 {\displaystyle ax-by=1} 有无穷多对正整数解 ( x , y ) {\displaystyle (x,y)}

选取最小的正整数解 ( m , n ) {\displaystyle (m,n)} 。取单位分数分母为 b m {\displaystyle bm} ,重复步骤。

7 10 {\displaystyle {\frac {7}{10}}} 为例:

最基本的方法就是将分数写成二进制数,便能将该分数写成分母为二的幂的单位分数之和。

换个说法就是重复求最小的正整数 n {\displaystyle n} 使得 x y > 1 2 n {\displaystyle {\frac {x}{y}}>{\frac {1}{2^{n}}}}

这个方法的效率很低。

一个改善之道是选取正整数 n {\displaystyle n} 使得 ( 2 n × x ) mod y < 2 n + 1 {\displaystyle (2^{n}\times x){\bmod {y}}<2^{n+1}} 。选取适当的正整数 r , s {\displaystyle r,s} r < y {\displaystyle r<y} )使得 2 n × x = s y + r {\displaystyle 2^{n}\times x=sy+r} x y = s 2 n + r 2 n × y {\displaystyle {\frac {x}{y}}={\frac {s}{2^{n}}}+{\frac {r}{2^{n}\times y}}} 。将 s 2 n , r 2 n {\displaystyle {\frac {s}{2^{n}}},{\frac {r}{2^{n}}}} 写成二进制数。

例如: 18 23 {\displaystyle {\frac {18}{23}}}

将一个分数表示成未必相异的单位分数之和。若有两个单位分数相同,可以用以下其中一种处理方式:

或是 1 n = 1 n + 1 + 1 n ( n + 1 ) {\displaystyle {\frac {1}{n}}={\frac {1}{n+1}}+{\frac {1}{n(n+1)}}} n {\displaystyle n} 可等于任意正整数

1 n {\displaystyle {\frac {1}{n}}} 表示成为一个级数形式:

1 n = 1 n + 1 + 1 ( n + 1 ) 2 + 1 ( n + 1 ) 3 + 1 ( n + 1 ) 4 + . . . + 1 ( n + 1 ) k + 1 n ( n + 1 ) k {\displaystyle {\frac {1}{n}}={\frac {1}{n+1}}+{\frac {1}{(n+1)^{2}}}+{\frac {1}{(n+1)^{3}}}+{\frac {1}{(n+1)^{4}}}+...+{\frac {1}{(n+1)^{k}}}+{\frac {1}{n(n+1)^{k}}}}


数学史家有时论述代数的发展分为三个基本阶段:

未知数以符号形式通常记为。我们从古埃及文稿得知,埃及祭司和书记采用文字代数的方式,以一个解为“堆”或“集”的字“阿哈”来表示未知数。

这是现存在伦敦的大英博物馆的莱因德数学纸草书(第二中间期)所载,其中一个阿哈问题的翻译:

“问题24: 一个数量和它的 1 7 {\displaystyle {\frac {1}{7}}} 加起来是19。这数量是什么?”

“假设是7。7和7的 1 7 {\displaystyle {\frac {1}{7}}} 是8。8要乘上多少倍以得到19,7也要乘上这样多倍以得到所要的数量。”

以现在的符号形式, x + x 7 = 8 x 7 = 19 {\displaystyle x+{\frac {x}{7}}={\frac {8x}{7}}=19} ,故此 x = 133 8 {\displaystyle {x}={\frac {133}{8}}} 。检查: 133 8 + 133 7 × 8 = 133 8 + 19 8 = 152 8 = 19 {\displaystyle {\frac {133}{8}}+{\frac {133}{7\times 8}}={\frac {133}{8}}+{\frac {19}{8}}={\frac {152}{8}}=19}

注意问题中的分数。古埃及人以单位分数计算,如 1 2 , 1 3 , 1 4 , 1 10 {\displaystyle {\frac {1}{2}},{\frac {1}{3}},{\frac {1}{4}},{\frac {1}{10}}}

一个形状如开口的象形文字是表记分数的符号,这“开口”下有象形文字的数字就是分数的分母。

相关

  • 纳-德内语系纳-德内语系(英语:Na-Dené languages),或作纳-得内语系、纳-达内语系或纳-德内诸语言,都是指北美洲原住民的一个建议中的语系,主要分布于加拿大西南部(包括西北地区、育空地区及其邻
  • 多细胞动物多细胞生物是指由多个、分化的细胞组成的生物体,其分化的细胞各有不同的、专门的功能。大多数可以使用肉眼看到的生物是多细胞生物。 所有多细胞生物都属于真核生物。多细胞
  • 误差误差(errors)是实验科学术语。指测量结果偏离真值的程度。对任何一个物理量进行的测量都不可能得出一个绝对准确的数值,即使使用测量技术所能达到的最完善的方法,测出的数值也
  • 换算长度换算长度,简称换长,是中国铁路使用的一种铁路机车、车辆的长度单位,等于11米。中华人民共和国成立之初,为了简化对铁路机车车辆和列车的长度计算,便于统计车站线路中能容纳的列车
  • 亨利·赛登托夫亨利·赛登托夫(Henry Friedrich Wilhelm Siedentopf)( 1872年9月22日-1940年5月8日),德国物理学家。亨利·赛登托夫从1899年至1938年,在耶拿卡尔·蔡司公司工作。从1919年开始,他在
  • 田野 (数学家)田野(?-),中国数学家,中国科学院数学与系统科学研究院研究员。他对数论领域做出了杰出的贡献。1989年-1996年,田野就读于四川大学数学系基础数学专业,获得了学士与硕士学位。1996年-
  • 理查德·海曼理查德·海曼(英语:Richard Hayman,1920年3月27日─2014年2月5日),是一名美国口琴演奏家、通俗音乐编曲和指挥家。1940年代,在米高梅电影公司从事编曲工作,并出品的《Girl Crazy(英
  • 1998年5月逝世人物列表1998年5月逝世人物列表,是用于汇总1998年5月期间逝世人物的列表。
  • 乡音《乡音》是1983年上映的中国大陆剧情片,由珠江电影制片厂摄制,胡炳榴执导,张伟欣、刘延主演。影片获1984年第4届中国电影金鸡奖最佳故事片奖。
  • 木棋(芬兰)木棋,或称(芬兰)木柱、芬兰撞柱(芬兰语:Mölkky (芬兰语发音: ),是由Lahden Paikka公司(前称Tuoterengas)于1996年发明的芬兰投掷游戏。它在卡累利阿人根的古老投掷游戏kyykkä的基