狄拉克场

✍ dations ◷ 2025-10-16 14:53:06 #量子场论,旋量

在量子场论中,狄拉克场用于描述自旋-1/2的费米子,如:电子、质子、夸克等粒子。并且狄拉克场遵守反正则对易关系,数学上可以表示成有四的分量的旋量或一对两个分量的外尔旋量。

虽然都用于描述自旋-1/2的费米子,其与马约拉那场不同。狄拉克场描述的粒子存在反粒子,然而马约拉那场描述的粒子即为自身的反粒子。

自由(没有交互作用)的狄拉克场遵守反正则对易关系,数学上使用到反交换子 { a , b } = a b + b a {\displaystyle \{a,b\}=ab+ba} 代表质量。这个方程式最简单的解为平面波 ψ 1 ( x ) = u ( p ) e i p . x {\displaystyle \psi _{1}(x)=u(p)e^{-ip.x}\,} ψ 2 ( x ) = v ( p ) e i p . x {\displaystyle \psi _{2}(x)=v(p)e^{ip.x}\,} 。平面波组成了一个 ψ ( x ) {\displaystyle \psi (x)} 的傅立叶基底。我们能以此基底作展开,如下:

ψ ( x ) = d 3 p ( 2 π ) 3 1 2 E p s ( a p s u s ( p ) e i p x + b p s v s ( p ) e i p x ) . {\displaystyle \psi (x)=\int {\frac {d^{3}p}{(2\pi )^{3}}}{\frac {1}{\sqrt {2E_{p}}}}\sum _{s}\left(a_{\textbf {p}}^{s}u^{s}(p)e^{-ip\cdot x}+b_{\textbf {p}}^{s\dagger }v^{s}(p)e^{ip\cdot x}\right).\,}

a {\displaystyle a\,} b {\displaystyle b\,} 标示了旋量的指标, s {\displaystyle s\,} 表示自旋,s = +1/2或s=−1/2。前面系数中的能量是为了劳伦兹积分的协变性。由于 ψ ( x ) {\displaystyle \psi (x)\,} 可以视作一个算符,每个傅立叶基底的系数也必须是算符。因此, a p s {\displaystyle a_{\textbf {p}}^{s}} 以及 b p s {\displaystyle b_{\textbf {p}}^{s\dagger }} 为作用子。这些算符的性质可以从这些场的性质中得知。 ψ ( x ) {\displaystyle \psi (x)\,} ψ ( y ) {\displaystyle \psi (y)^{\dagger }} 遵守反对易关系:

借由将 ψ ( x ) {\displaystyle \psi (x)\,} ψ ( y ) {\displaystyle \psi (y)\,} 作展开,我们可以得到系数间的反对易关系:

于非相对论系统中的创造与湮灭算符相类似,从这个代数关系得到了这样的物理诠释: a p s {\displaystyle a_{\textbf {p}}^{s\dagger }} 产生一个动量 p {\displaystyle {\textbf {p}}\,} 自旋为s的粒子,而 b q r {\displaystyle b_{\textbf {q}}^{r\dagger }} 产生一个动量 q {\displaystyle {\textbf {q}}\,} 自旋为r的反粒子。因此,广义的 ψ ( x ) {\displaystyle \psi (x)\,} 现在看作产生所有可能动量、自旋之粒子的总合,而其共轭 ψ ¯   = d e f   ψ γ 0 {\displaystyle {\bar {\psi }}\ {\stackrel {\mathrm {def} }{=}}\ \psi ^{\dagger }\gamma ^{0}} 与其相反,看作湮灭所有动量、自旋之反粒子的总合。

有了对于场及其共轭的了解,我们便能试着架构出劳仑兹协变性的场。最单纯的量为 ψ ¯ ψ {\displaystyle {\overline {\psi }}\psi \,} ,当中 ψ ¯ = ψ γ 0 {\displaystyle {\bar {\psi }}=\psi ^{\dagger }\gamma ^{0}} 。其他可能的劳仑兹协变性量 ψ ¯ γ μ μ ψ {\displaystyle {\overline {\psi }}\gamma ^{\mu }\partial _{\mu }\psi }

由于这些量的线性组和同样符合劳仑兹协变性,很自然地得到了狄拉克场的拉格朗日密度,并且其欧拉-拉格朗日方程必须回到狄拉克方程式。

这样的表示将指标隐藏了起来。完整的表示如下:

ψ ( x ) {\displaystyle \psi (x)} ,我们可以建构出狄拉克场的费曼传播子:

我们定义狄拉克场的时间排序如下,当中的负号来自于其反对易关系的性质:

对上列的式子作平面波的展开,得到:

在此我们用上了费曼斜线标记。这个式子相当合理,因为系数

即为狄拉克方程式中作用在 ψ ( x ) {\displaystyle \psi (x)\,} 的相反算符。标量场的费曼传播子也具有相同的性质。由于所有合理的观测量(例如能量、电荷、粒子数等)都由偶数的狄拉克场所构成,两个观测量的对易关系在光锥外为零。就如同我们从量子力学中学习到的,两的可交换的观察量可以同时被观测。因此,我们确定了狄拉克场的劳仑兹协变性,并维持了因果律。

而更复杂、包含交互作用的场论(汤川理论(Yukawa theory)或量子电动力学)同样可以微扰或非为扰方法作分析。

在粒子物理标准模型中,狄拉克场扮演很重要的要素。

相关

  • 台北市立大学坐标:25°02′10″N 121°30′50″E / 25.03611°N 121.51389°E / 25.03611; 121.51389台北市立大学(英文:University of Taipei;日文:台北市立大学),简称台北市大、市立北大、北
  • 正蓝旗正蓝旗(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus Ti
  • 寡毛亚纲寡毛纲(学名:Oligotrichea)之下只有下列两个亚纲:
  • 弗里德里希·奥古斯特一世 (萨克森国王)弗里德里希·奥古斯特一世(Friedrich August I,1750年12月23日-1827年5月5日),全名弗里德里希·奥古斯特·约瑟夫·玛利亚·安东·约翰·奈波穆克·阿洛易斯·克萨威尔(Friedrich
  • 李斯法家系列条目战国:李悝、吴起、慎到、申不害、   商鞅、李斯、韩非李斯(前284年-前208年),字通古,楚国上蔡(今河南省上蔡县西南方)人,是秦朝著名的政治家、文学家和书法家。李斯曾
  • 布鲁斯·查特文查尔斯·布鲁斯·查特文(英语:Charles Bruce Chatwin,1940年5月13日-1989年1月18日),英格兰旅游作家,小说家和记者。1940年出生在英格兰谢菲尔德附件村庄,曾经是苏富比的董事之一,后
  • 连新路连新路是广东省广州市越秀区的一条南北走向的道路,在观音山脚中山纪念堂侧边,位于应元路以南,中山五路以北。全长943米,宽15米。清代时北段为九龙街,南段为连新街。1920年,市政府
  • 吉妮·杨森吉妮·杨森(Janine Jansen,1978年1月7日-)是一位荷兰小提琴、中提琴音乐家。吉妮·杨森出生于荷兰一个音乐家庭,父亲Jan Jansen(nl)是风琴、大键琴和钢琴音乐家; 从1987年到2011年
  • 黑后黑后(英语:Negasonic Teenage Warhead),本名艾莉·菲米丝特(Ellie Phimister),是漫威漫画中的虚构女超级英雄角色,由作家葛兰·莫瑞森(英语:Grant Morrison)和艺术家法兰克·奎特利(英语
  • 潮王潮王是中国南明时期,由昭宗敕封郑成功的亲王爵号,郑成功辞不受,后其孙郑克塽自封之,并追谥郑成功与郑经。