首页 >
四角化菱形十二面体
✍ dations ◷ 2025-10-22 07:45:16 #四角化菱形十二面体
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰多面体,又称为六八面体(hexoctahedron)、六角化八面体(hexakis octahedron)、八角化立方体(octakis cube、octakis hexahedron)、菱形四角化十二面体(kisrhombic dodecahedron),虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。四角化菱形十二面体是卡塔兰立体的一种,即阿基米德立体的对偶多面体,其对应的阿基米德立体为大斜方截半立方体。并具有面可递的性质,这意味着,这立体上的任意两个面A和B,透过旋转或镜射这个立体,使A移动到B原来的位置时,其面仍然占据了相同的空间区域。所有的正多面体都拥有这个特性,然而四角化菱形十二面体并未所有边等长、组成的面也非正多边形,因此不属于正多面体。四角化菱形十二面体共由48个面、72个边、26个顶点组成,其中48个面为全等的三角形、72条边则有3种长度,每个长度各24条、26个顶点当中,有12个四面角顶点、8个六面角顶点、和 6个八面角顶点。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形或在菱形十二面体的每个面上叠上一个菱形锥来组成四角化菱形十二面体。一个最短边边长为单位长的四角化菱形十二面体,其表面积A、体积V为:四角化菱形十二面体具有Oh, B3, (*432)的八面体群对称性(英语:Octahedral_symmetry)。其每条棱皆代表八面体群对称性的镜射线。其结构也可以透过将立方体在每个正方形面上以正方形的顶点、边中点和几何中心为基准将正方形分成8个三角形、或透过将正八面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形、或透过将菱形十二面体在每个菱形面上以菱形的几何中心为基准将菱形分成四个三角形来看出。与四角化菱形十二面体对应的球面镶嵌可透过透过9个球面大圆来构建(即四角化菱形十二面体投影到球面的结果),因此在球极平面投影中,四角化菱形十二面体的棱可以在平面上形成9个圆或中心径向线。这9个圆或中心径向线可以分成两组,其中一组由3个圆或中心径向线组成(下图以紫色表示)、另一组由6个圆或中心径向线组成(下图以红色表示),分别代表其两个正交子群,分别是(英语:Dihedral_symmetry_in_three_dimensions)和(英语:tetrahedral symmetry):四角化菱形十二面体及其对偶多面体大斜方截半立方体存在多个能投影出对称正交投影的投影方向。前两者的对偶图其对称性对应于A2和B2的考克斯特平面(英语:Coxeter plane)。四角化菱形十二面体由48个全等的不等边三角形组成。该三角形三边皆不等长。若其对偶多面体的大斜方截半立方体边长为单位长,则对应的四角化菱形十二面体组成面,最短边长为
2
3
(
10
−
2
)
7
{displaystyle {tfrac {2{sqrt {3left(10-{sqrt {2}}right)}}}{7}}}
、次长边长为
3
6
(
2
+
2
)
7
{displaystyle {tfrac {3{sqrt {6left(2+{sqrt {2}}right)}}}{7}}}
、最长边长为
2
6
(
10
+
2
)
7
{displaystyle {tfrac {2{sqrt {6left(10+{sqrt {2}}right)}}}{7}}}
。若最短边长为单位长,则对应的短边长为1、次长边长为
3
2
2
+
4
2
−
2
+
10
≈
1.338
{displaystyle {tfrac {3{sqrt {2{sqrt {2}}+4}}}{2{sqrt {-{sqrt {2}}+10}}}}approx 1.338}
、最长边长为
2
2
+
20
−
2
+
10
≈
1.631
{displaystyle {tfrac {sqrt {2{sqrt {2}}+20}}{sqrt {-{sqrt {2}}+10}}}approx 1.631}
,三个角角度分别为(55.02° ,37.77° ,87.20°)。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形,而菱形十二面体可以经由立方体透过会合变换构造,即将立方体每个面贴上角锥,并用适当的锥高,使角锥侧面与邻近面上贴的角锥之测面共面来获得。亦可以从其对偶多面体大斜方截半立方体经对偶变换而来,而四角化菱形十二面体也可以变换回其对偶大斜方截半立方体,而大斜方截半立方体也是立方体经过康威变换的结果。因此四角化菱形十二面体可以视为一个以立方体为出发点经由2次康威变换来完成。其他也是由立方体为出发点经由有限次的康威变换产生的多面体有:在面的布局中,四角化菱形十二面体可以写成V4.6.8 ,其意义为其面由3个顶点组成,每个顶点依序是:四个面的公共顶点、六个面的公共顶点和八个面的公共顶点。其可以进一步的列在V4.6.2n的无穷序列中n为4的位置。在图论的数学领域中,与四角化菱形十二面体相关的图为四角化菱形十二面体图(Disdyakis Dodecahedral Graph),是四角化菱形十二面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化菱形十二面体图有72条边和26个顶点,其中度为4的顶点有12个、度为6的顶点有8个、度为8的顶点有6个。其特征多项式为:
相关
- 荧光淬灭荧光淬灭(英语:Quenching)猝灭是当常温物质经射线照射(通常为紫外线或X射线)所发出会萤光强度降低的任何过程。淬灭受压力和温度的影响很大,许多过程都可导致淬灭,例如激发态反应,能
- 脱氧核糖去氧核糖(Deoxyribose)又称脫氧核糖、D-脱氧核糖、2-脱氧核糖或D-2-脱氧核糖,是核糖的2-位羟基被氢取代后形成的脱氧糖衍生物,是一个戊醛糖。它同时也是D-阿拉伯糖的2-脱氧产物
- 卡铂卡铂(英语:Carboplatin)是一种用于治疗多种癌症的化疗药物,这些癌症包括卵巢癌、肺癌、头颈癌、脑癌、神经母细胞瘤等,卡铂还用以一些特殊类型的三阴性乳癌等癌症的治疗。其主要
- 艾美奖艾美奖(英语:Emmy Award)是美国一项用于表彰其电视工业杰出人士和节目的奖励,其重要程度等同于电影界的奥斯卡金像奖(英语:Academy Award)、音乐界的格莱美奖(英语:Grammy Awards)以及
- 弹状病毒科水泡病毒属 Vesiculovirus 丽沙病毒属 Lyssavirus 短时热病毒属 Ephemerovirus 胞内水稻黄矮炮弹病毒属 Cytorhabdovirus 核内水稻黄矮炮弹病毒 Nucleorhabdovirus 粒外弹状
- 巯基硫醇或巯(Thiol)是包含巯基官能团(-SH)的一类非芳香化合物,是一类有机硫化合物。可以看成醇中的氧原子被硫原子替换。硫醇中,硫原子为不等性sp3杂化态,两个单电子占据的sp3杂化轨
- 1-丙醇1-丙醇(Propan-1-ol)是一种有三个碳原子的醇类有机化合物。 简单的化学式为C3H7OH。分子式为CH3CH2CH2OH,依按IUPAC命名法称作丙-1-醇。是一氧化碳和氢合成甲醇时的副产物。其
- 万事发七星(英语:Mevius,日语:メビウス,前称Mild Seven,日语:マイルドセブン),是由日本烟草股份有限公司出品的一个香烟品牌,也是世界上第二大的烟草品牌。目前,七星已在超过40个国家中销售。
- HD 85512 bHD 85512 b是一颗太阳系外行星,是绕行位于船帆座的K型主序星HD 85512(又称为格利泽 370)轨道上的行星,距离地球约36光年,又称为格利泽 370b(Gliese 370 b)。因为HD 85512 b的质量至
- 中枢听觉系统听觉通路(英文:auditory pathway),简称听路,是指与听觉产生相关的一系列解剖结构。听觉通路在中枢神经系统(脑)之外的部分称为听觉外周,在中枢神经系统内的部分称为听觉中枢或中枢听