首页 >
四角化菱形十二面体
✍ dations ◷ 2025-04-25 09:37:02 #四角化菱形十二面体
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰多面体,又称为六八面体(hexoctahedron)、六角化八面体(hexakis octahedron)、八角化立方体(octakis cube、octakis hexahedron)、菱形四角化十二面体(kisrhombic dodecahedron),虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。四角化菱形十二面体是卡塔兰立体的一种,即阿基米德立体的对偶多面体,其对应的阿基米德立体为大斜方截半立方体。并具有面可递的性质,这意味着,这立体上的任意两个面A和B,透过旋转或镜射这个立体,使A移动到B原来的位置时,其面仍然占据了相同的空间区域。所有的正多面体都拥有这个特性,然而四角化菱形十二面体并未所有边等长、组成的面也非正多边形,因此不属于正多面体。四角化菱形十二面体共由48个面、72个边、26个顶点组成,其中48个面为全等的三角形、72条边则有3种长度,每个长度各24条、26个顶点当中,有12个四面角顶点、8个六面角顶点、和 6个八面角顶点。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形或在菱形十二面体的每个面上叠上一个菱形锥来组成四角化菱形十二面体。一个最短边边长为单位长的四角化菱形十二面体,其表面积A、体积V为:四角化菱形十二面体具有Oh, B3, (*432)的八面体群对称性(英语:Octahedral_symmetry)。其每条棱皆代表八面体群对称性的镜射线。其结构也可以透过将立方体在每个正方形面上以正方形的顶点、边中点和几何中心为基准将正方形分成8个三角形、或透过将正八面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形、或透过将菱形十二面体在每个菱形面上以菱形的几何中心为基准将菱形分成四个三角形来看出。与四角化菱形十二面体对应的球面镶嵌可透过透过9个球面大圆来构建(即四角化菱形十二面体投影到球面的结果),因此在球极平面投影中,四角化菱形十二面体的棱可以在平面上形成9个圆或中心径向线。这9个圆或中心径向线可以分成两组,其中一组由3个圆或中心径向线组成(下图以紫色表示)、另一组由6个圆或中心径向线组成(下图以红色表示),分别代表其两个正交子群,分别是(英语:Dihedral_symmetry_in_three_dimensions)和(英语:tetrahedral symmetry):四角化菱形十二面体及其对偶多面体大斜方截半立方体存在多个能投影出对称正交投影的投影方向。前两者的对偶图其对称性对应于A2和B2的考克斯特平面(英语:Coxeter plane)。四角化菱形十二面体由48个全等的不等边三角形组成。该三角形三边皆不等长。若其对偶多面体的大斜方截半立方体边长为单位长,则对应的四角化菱形十二面体组成面,最短边长为
2
3
(
10
−
2
)
7
{displaystyle {tfrac {2{sqrt {3left(10-{sqrt {2}}right)}}}{7}}}
、次长边长为
3
6
(
2
+
2
)
7
{displaystyle {tfrac {3{sqrt {6left(2+{sqrt {2}}right)}}}{7}}}
、最长边长为
2
6
(
10
+
2
)
7
{displaystyle {tfrac {2{sqrt {6left(10+{sqrt {2}}right)}}}{7}}}
。若最短边长为单位长,则对应的短边长为1、次长边长为
3
2
2
+
4
2
−
2
+
10
≈
1.338
{displaystyle {tfrac {3{sqrt {2{sqrt {2}}+4}}}{2{sqrt {-{sqrt {2}}+10}}}}approx 1.338}
、最长边长为
2
2
+
20
−
2
+
10
≈
1.631
{displaystyle {tfrac {sqrt {2{sqrt {2}}+20}}{sqrt {-{sqrt {2}}+10}}}approx 1.631}
,三个角角度分别为(55.02° ,37.77° ,87.20°)。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形,而菱形十二面体可以经由立方体透过会合变换构造,即将立方体每个面贴上角锥,并用适当的锥高,使角锥侧面与邻近面上贴的角锥之测面共面来获得。亦可以从其对偶多面体大斜方截半立方体经对偶变换而来,而四角化菱形十二面体也可以变换回其对偶大斜方截半立方体,而大斜方截半立方体也是立方体经过康威变换的结果。因此四角化菱形十二面体可以视为一个以立方体为出发点经由2次康威变换来完成。其他也是由立方体为出发点经由有限次的康威变换产生的多面体有:在面的布局中,四角化菱形十二面体可以写成V4.6.8 ,其意义为其面由3个顶点组成,每个顶点依序是:四个面的公共顶点、六个面的公共顶点和八个面的公共顶点。其可以进一步的列在V4.6.2n的无穷序列中n为4的位置。在图论的数学领域中,与四角化菱形十二面体相关的图为四角化菱形十二面体图(Disdyakis Dodecahedral Graph),是四角化菱形十二面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化菱形十二面体图有72条边和26个顶点,其中度为4的顶点有12个、度为6的顶点有8个、度为8的顶点有6个。其特征多项式为:
相关
- 同一性与变化在哲学的形而上学领域中,同一性与变化的关系是看似简单却复杂的议题。本条目是要探讨“变化与同一性的问题”。当一个物体变化,它总是在某个特定方面变化。一个婴儿成长,他是在
- 骑士精神骑士精神,是中世纪欧洲上层社会的一种精神文明,它是以个人身份的优越感为基础的道德与人格的表现,但它也积淀着西欧民族远古尚武精神的某些积极因素,继承了古代欧洲部落文明至早
- 痔疮痔垫(英语:Hemorrhoids),是位于肛管(英语:Anal canal)的血管(英语:sinusoid (blood vessel))组织,在正常情形下可协助控制排便。但当它肿胀(英语:Swelling (medical))或发炎时,会呈现病态或
- 维蒂希格奥尔格·维蒂希(德语:Georg Wittig,1897年6月16日-1987年8月26日),德国化学家,1979年因将磷化合物用于有机合成之中而与赫伯特·布朗分享诺贝尔化学奖。1897年6月16日生于德意志
- 子囊菌纲子囊菌门(学名:Ascomycota)是真菌界中种类最多的一个门,其中除酵母亚门为单细胞外,其余种类都是多细胞的,有分枝、有隔的菌丝组成的。它与担子菌门(Basidiomycota)一起构成了双核亚
- 麝鹿麝,俗称香獐,在有角下目是现存最原始的科,种类少,无角,雄性有发达獠牙。麝属中有七个种,包括原麝、林麝、黑麝、喜马拉雅麝、安徽麝(原被认为是林麝的亚种)。、白腹麝(也常被称为喜玛
- 公投护台湾联盟社团法人台湾公投护台湾联盟促进会,简称公投护台湾联盟、公投盟、ART,是台湾的社会运动团体,主张修正《公民投票法》降低公民投票门槛、废除《集会游行法》。2008年11月2日,由前
- 赤道面天球赤道是在天球上的一个大圆,它与地球的赤道是同一个平面。换言之,天球赤道是地球赤道在天球上的投影。相同的结果是地球的轨道倾角,使天球的赤道相对于黄道平面倾斜约23.5°
- 人造月亮人造月亮的构想最早源于一位欧洲火箭之父赫尔曼·奥伯特的想法:“在地球上空挂一圈镜子做成的项链,让它们一年四季把阳光反射到巴黎的大街小巷。”二战期间1945 年7月的《Life
- 东海女真野人女真,中国明代时期女真族三大部之一。明代女真分为建州、海西、野人女真三部。其中野人女真的地区最北,主要分布于海西(今松花江东)以北、以东和建州以东北的地方,包括了松花