首页 >
四角化菱形十二面体
✍ dations ◷ 2025-09-15 05:51:23 #四角化菱形十二面体
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰多面体,又称为六八面体(hexoctahedron)、六角化八面体(hexakis octahedron)、八角化立方体(octakis cube、octakis hexahedron)、菱形四角化十二面体(kisrhombic dodecahedron),虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。四角化菱形十二面体是卡塔兰立体的一种,即阿基米德立体的对偶多面体,其对应的阿基米德立体为大斜方截半立方体。并具有面可递的性质,这意味着,这立体上的任意两个面A和B,透过旋转或镜射这个立体,使A移动到B原来的位置时,其面仍然占据了相同的空间区域。所有的正多面体都拥有这个特性,然而四角化菱形十二面体并未所有边等长、组成的面也非正多边形,因此不属于正多面体。四角化菱形十二面体共由48个面、72个边、26个顶点组成,其中48个面为全等的三角形、72条边则有3种长度,每个长度各24条、26个顶点当中,有12个四面角顶点、8个六面角顶点、和 6个八面角顶点。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形或在菱形十二面体的每个面上叠上一个菱形锥来组成四角化菱形十二面体。一个最短边边长为单位长的四角化菱形十二面体,其表面积A、体积V为:四角化菱形十二面体具有Oh, B3, (*432)的八面体群对称性(英语:Octahedral_symmetry)。其每条棱皆代表八面体群对称性的镜射线。其结构也可以透过将立方体在每个正方形面上以正方形的顶点、边中点和几何中心为基准将正方形分成8个三角形、或透过将正八面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形、或透过将菱形十二面体在每个菱形面上以菱形的几何中心为基准将菱形分成四个三角形来看出。与四角化菱形十二面体对应的球面镶嵌可透过透过9个球面大圆来构建(即四角化菱形十二面体投影到球面的结果),因此在球极平面投影中,四角化菱形十二面体的棱可以在平面上形成9个圆或中心径向线。这9个圆或中心径向线可以分成两组,其中一组由3个圆或中心径向线组成(下图以紫色表示)、另一组由6个圆或中心径向线组成(下图以红色表示),分别代表其两个正交子群,分别是(英语:Dihedral_symmetry_in_three_dimensions)和(英语:tetrahedral symmetry):四角化菱形十二面体及其对偶多面体大斜方截半立方体存在多个能投影出对称正交投影的投影方向。前两者的对偶图其对称性对应于A2和B2的考克斯特平面(英语:Coxeter plane)。四角化菱形十二面体由48个全等的不等边三角形组成。该三角形三边皆不等长。若其对偶多面体的大斜方截半立方体边长为单位长,则对应的四角化菱形十二面体组成面,最短边长为
2
3
(
10
−
2
)
7
{displaystyle {tfrac {2{sqrt {3left(10-{sqrt {2}}right)}}}{7}}}
、次长边长为
3
6
(
2
+
2
)
7
{displaystyle {tfrac {3{sqrt {6left(2+{sqrt {2}}right)}}}{7}}}
、最长边长为
2
6
(
10
+
2
)
7
{displaystyle {tfrac {2{sqrt {6left(10+{sqrt {2}}right)}}}{7}}}
。若最短边长为单位长,则对应的短边长为1、次长边长为
3
2
2
+
4
2
−
2
+
10
≈
1.338
{displaystyle {tfrac {3{sqrt {2{sqrt {2}}+4}}}{2{sqrt {-{sqrt {2}}+10}}}}approx 1.338}
、最长边长为
2
2
+
20
−
2
+
10
≈
1.631
{displaystyle {tfrac {sqrt {2{sqrt {2}}+20}}{sqrt {-{sqrt {2}}+10}}}approx 1.631}
,三个角角度分别为(55.02° ,37.77° ,87.20°)。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形,而菱形十二面体可以经由立方体透过会合变换构造,即将立方体每个面贴上角锥,并用适当的锥高,使角锥侧面与邻近面上贴的角锥之测面共面来获得。亦可以从其对偶多面体大斜方截半立方体经对偶变换而来,而四角化菱形十二面体也可以变换回其对偶大斜方截半立方体,而大斜方截半立方体也是立方体经过康威变换的结果。因此四角化菱形十二面体可以视为一个以立方体为出发点经由2次康威变换来完成。其他也是由立方体为出发点经由有限次的康威变换产生的多面体有:在面的布局中,四角化菱形十二面体可以写成V4.6.8 ,其意义为其面由3个顶点组成,每个顶点依序是:四个面的公共顶点、六个面的公共顶点和八个面的公共顶点。其可以进一步的列在V4.6.2n的无穷序列中n为4的位置。在图论的数学领域中,与四角化菱形十二面体相关的图为四角化菱形十二面体图(Disdyakis Dodecahedral Graph),是四角化菱形十二面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化菱形十二面体图有72条边和26个顶点,其中度为4的顶点有12个、度为6的顶点有8个、度为8的顶点有6个。其特征多项式为:
相关
- 内耳性眩晕病美尼尔氏综合症(Ménière's disease)是内耳的疾病,其症状是会突然眩晕、耳鸣、听力减损,而且耳朵有肿胀感。最典型的症状是一开始只有单侧耳朵有症状,不过后来可能双耳都受到影
- 酸酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,
- 头颅计算机断层成像术头颅计算机断层成像术(英语:Computed tomography of the head)是指将一系列从不同方向扫描头部的X射线获得的数据经由计算机程序转为颅脑的横断面影像的检查方法。其获得的横断
- 时尚时尚可以指:
- b梁/b font style=color:#888small502–557/small梁(502年-557年),又称南梁,是中国历史上南北朝时期南朝的第三个朝代,由南齐宗室萧衍称帝,改国号为梁,都建康(今江苏南京)。以萧衍封地在古梁郡,故国号为梁。因为皇帝姓萧,又称萧梁。南齐
- 玛丽·居礼玛丽亚·斯克沃多夫斯卡-居里(波兰语:Maria Skłodowska-Curie,1867年11月7日-1934年7月4日),通常称为玛丽·居里(法语:Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化
- 舍脂舍脂(梵语:शची,转写:Śacī),又译为舍支、设支,婆罗门教-印度教中的一个重要的女神,雷神因陀罗的妻子。她有许多别名,如因陀罗尼、补卢弥,等等。在梨俱吠陀中就已经出现过因陀罗尼
- 雷姆雷斯勒穆瑞斯(英语:Lemures)古罗马神话与宗教中的神祇之一。其事迹见古罗马相关作家之著述。在古罗马得到古罗马人崇拜并受到广泛供奉,具有重要地影响与积极意义。
- 路易-菲利普一世路易-菲利普一世(法语:Louis-Philippe Ier,1773年10月6日-1850年8月26日),法国国王(1830-1848年)。又称“路易腓力”。奥尔良公爵路易·腓力·约瑟夫之子。1789年继承瓦卢瓦公爵,1793
- 清姓《百家姓》中无此姓清姓为汉姓之一。晋国有大夫食邑于清,至晋厉公大夫清沸魋,始姓清。