首页 >
四角化菱形十二面体
✍ dations ◷ 2025-01-31 14:04:25 #四角化菱形十二面体
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰多面体,又称为六八面体(hexoctahedron)、六角化八面体(hexakis octahedron)、八角化立方体(octakis cube、octakis hexahedron)、菱形四角化十二面体(kisrhombic dodecahedron),虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。四角化菱形十二面体是卡塔兰立体的一种,即阿基米德立体的对偶多面体,其对应的阿基米德立体为大斜方截半立方体。并具有面可递的性质,这意味着,这立体上的任意两个面A和B,透过旋转或镜射这个立体,使A移动到B原来的位置时,其面仍然占据了相同的空间区域。所有的正多面体都拥有这个特性,然而四角化菱形十二面体并未所有边等长、组成的面也非正多边形,因此不属于正多面体。四角化菱形十二面体共由48个面、72个边、26个顶点组成,其中48个面为全等的三角形、72条边则有3种长度,每个长度各24条、26个顶点当中,有12个四面角顶点、8个六面角顶点、和 6个八面角顶点。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形或在菱形十二面体的每个面上叠上一个菱形锥来组成四角化菱形十二面体。一个最短边边长为单位长的四角化菱形十二面体,其表面积A、体积V为:四角化菱形十二面体具有Oh, B3, (*432)的八面体群对称性(英语:Octahedral_symmetry)。其每条棱皆代表八面体群对称性的镜射线。其结构也可以透过将立方体在每个正方形面上以正方形的顶点、边中点和几何中心为基准将正方形分成8个三角形、或透过将正八面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形、或透过将菱形十二面体在每个菱形面上以菱形的几何中心为基准将菱形分成四个三角形来看出。与四角化菱形十二面体对应的球面镶嵌可透过透过9个球面大圆来构建(即四角化菱形十二面体投影到球面的结果),因此在球极平面投影中,四角化菱形十二面体的棱可以在平面上形成9个圆或中心径向线。这9个圆或中心径向线可以分成两组,其中一组由3个圆或中心径向线组成(下图以紫色表示)、另一组由6个圆或中心径向线组成(下图以红色表示),分别代表其两个正交子群,分别是(英语:Dihedral_symmetry_in_three_dimensions)和(英语:tetrahedral symmetry):四角化菱形十二面体及其对偶多面体大斜方截半立方体存在多个能投影出对称正交投影的投影方向。前两者的对偶图其对称性对应于A2和B2的考克斯特平面(英语:Coxeter plane)。四角化菱形十二面体由48个全等的不等边三角形组成。该三角形三边皆不等长。若其对偶多面体的大斜方截半立方体边长为单位长,则对应的四角化菱形十二面体组成面,最短边长为
2
3
(
10
−
2
)
7
{displaystyle {tfrac {2{sqrt {3left(10-{sqrt {2}}right)}}}{7}}}
、次长边长为
3
6
(
2
+
2
)
7
{displaystyle {tfrac {3{sqrt {6left(2+{sqrt {2}}right)}}}{7}}}
、最长边长为
2
6
(
10
+
2
)
7
{displaystyle {tfrac {2{sqrt {6left(10+{sqrt {2}}right)}}}{7}}}
。若最短边长为单位长,则对应的短边长为1、次长边长为
3
2
2
+
4
2
−
2
+
10
≈
1.338
{displaystyle {tfrac {3{sqrt {2{sqrt {2}}+4}}}{2{sqrt {-{sqrt {2}}+10}}}}approx 1.338}
、最长边长为
2
2
+
20
−
2
+
10
≈
1.631
{displaystyle {tfrac {sqrt {2{sqrt {2}}+20}}{sqrt {-{sqrt {2}}+10}}}approx 1.631}
,三个角角度分别为(55.02° ,37.77° ,87.20°)。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形,而菱形十二面体可以经由立方体透过会合变换构造,即将立方体每个面贴上角锥,并用适当的锥高,使角锥侧面与邻近面上贴的角锥之测面共面来获得。亦可以从其对偶多面体大斜方截半立方体经对偶变换而来,而四角化菱形十二面体也可以变换回其对偶大斜方截半立方体,而大斜方截半立方体也是立方体经过康威变换的结果。因此四角化菱形十二面体可以视为一个以立方体为出发点经由2次康威变换来完成。其他也是由立方体为出发点经由有限次的康威变换产生的多面体有:在面的布局中,四角化菱形十二面体可以写成V4.6.8 ,其意义为其面由3个顶点组成,每个顶点依序是:四个面的公共顶点、六个面的公共顶点和八个面的公共顶点。其可以进一步的列在V4.6.2n的无穷序列中n为4的位置。在图论的数学领域中,与四角化菱形十二面体相关的图为四角化菱形十二面体图(Disdyakis Dodecahedral Graph),是四角化菱形十二面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化菱形十二面体图有72条边和26个顶点,其中度为4的顶点有12个、度为6的顶点有8个、度为8的顶点有6个。其特征多项式为:
相关
- 三日疟原虫Haemamoeba malariae Feletti and Grassi, 1889 Plasmodium malariae var. quartanae Celli and Sanfelice, 1891 Plasmodium malariae quartanae Kruse, 1892 Haemamoeba l
- 费尔迪南·德·索绪尔弗迪南·德·索绪尔(法语:Ferdinand de Saussure,1857年11月26日-1913年2月22日),生于日内瓦,瑞士语言学家。索绪尔是现代语言学之父,他把语言学塑造成为一门影响巨大的独立学科。他
- 倒立显微镜光学显微镜(Optical microscope、Light microscope)是一种利用光学透镜产生影像放大效应的显微镜。由物体入射的光被至少两个光学系统(物镜和目镜)放大。首先物镜产生一个被放大
- 双子星座name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
- 查克·葛雷斯利查尔斯·欧内斯特·“查克”·格拉斯利(英语:Charles Ernest "Chuck" Grassley;1933年9月17日-),是一位美国共和党政治人物,自1981年担任艾奥瓦州美国参议院议员,现任美国参议院临时
- 伊勒-维莱讷省伊勒-维莱讷省(法语:Ille-et-Vilaine)是法国布列塔尼的一个省。这个省和莫尔比昂省、阿摩尔滨海省、大西洋卢瓦尔省、曼恩-卢瓦尔省、马耶纳省、芒什省六个省接壤。气象观测站:
- 体染色体体染色体又称常染色体,是指染色体组中除性染色体之外的染色体。例如人类的23对染色体中,有22对是常染色体,余下的一对是X染色体和/或Y染色体组成的性染色体。
- 到院前死亡到院前心肺功能停止(英语:Out-of-hospital cardiac arrest,简称 OHCA),原称到院前死亡(英语:Dead on arrival,简写 D.O.A.)是一个医学术语,泛指病患在送达医院的急诊室前已出现死亡的
- 分布直方图在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因
- 左旋同分异构体左旋与右旋是指有机化合物的对映异构体对偏振光中分别使光向逆时针或顺时针方向旋转。会令偏振光左旋或右旋的异构体会被称为左旋体和右旋体。在有机化学中,通常用(+)表示右