首页 >
四角化菱形十二面体
✍ dations ◷ 2025-08-25 18:12:51 #四角化菱形十二面体
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰多面体,又称为六八面体(hexoctahedron)、六角化八面体(hexakis octahedron)、八角化立方体(octakis cube、octakis hexahedron)、菱形四角化十二面体(kisrhombic dodecahedron),虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。四角化菱形十二面体是卡塔兰立体的一种,即阿基米德立体的对偶多面体,其对应的阿基米德立体为大斜方截半立方体。并具有面可递的性质,这意味着,这立体上的任意两个面A和B,透过旋转或镜射这个立体,使A移动到B原来的位置时,其面仍然占据了相同的空间区域。所有的正多面体都拥有这个特性,然而四角化菱形十二面体并未所有边等长、组成的面也非正多边形,因此不属于正多面体。四角化菱形十二面体共由48个面、72个边、26个顶点组成,其中48个面为全等的三角形、72条边则有3种长度,每个长度各24条、26个顶点当中,有12个四面角顶点、8个六面角顶点、和 6个八面角顶点。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形或在菱形十二面体的每个面上叠上一个菱形锥来组成四角化菱形十二面体。一个最短边边长为单位长的四角化菱形十二面体,其表面积A、体积V为:四角化菱形十二面体具有Oh, B3, (*432)的八面体群对称性(英语:Octahedral_symmetry)。其每条棱皆代表八面体群对称性的镜射线。其结构也可以透过将立方体在每个正方形面上以正方形的顶点、边中点和几何中心为基准将正方形分成8个三角形、或透过将正八面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形、或透过将菱形十二面体在每个菱形面上以菱形的几何中心为基准将菱形分成四个三角形来看出。与四角化菱形十二面体对应的球面镶嵌可透过透过9个球面大圆来构建(即四角化菱形十二面体投影到球面的结果),因此在球极平面投影中,四角化菱形十二面体的棱可以在平面上形成9个圆或中心径向线。这9个圆或中心径向线可以分成两组,其中一组由3个圆或中心径向线组成(下图以紫色表示)、另一组由6个圆或中心径向线组成(下图以红色表示),分别代表其两个正交子群,分别是(英语:Dihedral_symmetry_in_three_dimensions)和(英语:tetrahedral symmetry):四角化菱形十二面体及其对偶多面体大斜方截半立方体存在多个能投影出对称正交投影的投影方向。前两者的对偶图其对称性对应于A2和B2的考克斯特平面(英语:Coxeter plane)。四角化菱形十二面体由48个全等的不等边三角形组成。该三角形三边皆不等长。若其对偶多面体的大斜方截半立方体边长为单位长,则对应的四角化菱形十二面体组成面,最短边长为
2
3
(
10
−
2
)
7
{displaystyle {tfrac {2{sqrt {3left(10-{sqrt {2}}right)}}}{7}}}
、次长边长为
3
6
(
2
+
2
)
7
{displaystyle {tfrac {3{sqrt {6left(2+{sqrt {2}}right)}}}{7}}}
、最长边长为
2
6
(
10
+
2
)
7
{displaystyle {tfrac {2{sqrt {6left(10+{sqrt {2}}right)}}}{7}}}
。若最短边长为单位长,则对应的短边长为1、次长边长为
3
2
2
+
4
2
−
2
+
10
≈
1.338
{displaystyle {tfrac {3{sqrt {2{sqrt {2}}+4}}}{2{sqrt {-{sqrt {2}}+10}}}}approx 1.338}
、最长边长为
2
2
+
20
−
2
+
10
≈
1.631
{displaystyle {tfrac {sqrt {2{sqrt {2}}+20}}{sqrt {-{sqrt {2}}+10}}}approx 1.631}
,三个角角度分别为(55.02° ,37.77° ,87.20°)。四角化菱形十二面体可以将菱形十二面体透过四角化变换来完成,其等价于将菱形十二面体每个面替换成一个顶点和四个三角形,而菱形十二面体可以经由立方体透过会合变换构造,即将立方体每个面贴上角锥,并用适当的锥高,使角锥侧面与邻近面上贴的角锥之测面共面来获得。亦可以从其对偶多面体大斜方截半立方体经对偶变换而来,而四角化菱形十二面体也可以变换回其对偶大斜方截半立方体,而大斜方截半立方体也是立方体经过康威变换的结果。因此四角化菱形十二面体可以视为一个以立方体为出发点经由2次康威变换来完成。其他也是由立方体为出发点经由有限次的康威变换产生的多面体有:在面的布局中,四角化菱形十二面体可以写成V4.6.8 ,其意义为其面由3个顶点组成,每个顶点依序是:四个面的公共顶点、六个面的公共顶点和八个面的公共顶点。其可以进一步的列在V4.6.2n的无穷序列中n为4的位置。在图论的数学领域中,与四角化菱形十二面体相关的图为四角化菱形十二面体图(Disdyakis Dodecahedral Graph),是四角化菱形十二面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化菱形十二面体图有72条边和26个顶点,其中度为4的顶点有12个、度为6的顶点有8个、度为8的顶点有6个。其特征多项式为:
相关
- 透色门透色门(Percolozoa)是古虫界的一门,包括许多可以在变形虫、鞭毛虫、囊状形态之间切换的物种。
- 词缀词缀(affix)是一种附着在词根或词干的语素,为规范词素,不能单独成字。词缀可以是派生变化,如英语的-ness and pre-,也可以是屈折变化,如英语的复数 -s 和过去式-ed。根据词缀和词干
- 自卑自卑情结(英语:Inferiority Complex)指对自己的怀疑、不确定,并缺乏自尊的现象,但目前没有统一的标准测量该情结的严重程度。自卑情结通常存在于潜意识当中,容易造成当事人的过度
- 硅化木硅化木,又称木变石,是远古树木的遗骸经过长期的化学元素替换过程(特指硅化过程)而形成的化石。生物以木质树的植物形式在地球上出现已久,遍及世界各角落,在世界六大陆都能发现。其
- 文观部式文化观光部2000年式,亦称国语罗马字表记法(朝鲜语:국어의 로마자 표기법/國語의 로마字表記法 Gug-eoui lomaja pygogibeob)为现在韩国所使用的韩国语(谚文)拉丁文字转写规则。200
- 大卫·奇尔顿·菲利浦斯埃尔斯米尔的菲利普斯男爵大卫·奇尔顿·菲利浦斯,KBE,FRS(英语:David Chilton Phillips, Baron Phillips of Ellesmere,1924年3月7日-1999年2月23日),英国结构生物学家,在学界和政界
- 恐血症恐血症又称惧血症,是一种天生的怕见血液的恐惧症。不同的是:有的人天生只怕见自己的血,也有人天生怕别人的血、动物的血和自己的血。在生活上,患有恐血症的人会不敢去献血。研究
- 歌舞大王齐格飞《歌舞大王齐格飞》(英语:The Great Ziegfeld)是一部1936年由米高梅公司制作的歌舞片,内容是描述美国于二十世纪初极为知名的齐格飞富丽秀歌舞剧制作人小佛罗伦兹·齐格飞(英语:Fl
- 悯郡王悯郡王(满语:ᠵᡳᠯᠠᠴᡠᠩᡤᠠ ᡤᡳᠶᡡᠨ ᠸᠠᠩ,穆麟德:jilacungga giyūn wang;1858年),清朝咸丰帝第二子。生于咸丰八年(1858年)二月初五丑时,殇于卯时,生母玟贵妃徐佳氏。未命名
- 粪蝇科粪蝇科(学名:Scathophagidae),又名拟花蝇科,是家蝇总科下的一个小科。这个科下的黄粪蝇是北半球最为普遍及大量的苍蝇。粪蝇科下的物种在幼虫阶段较为多样化,包括有吃植物的、水中