十二进制

✍ dations ◷ 2025-05-31 02:22:57 #进位制

十二进制是数学中一种以12为底数的记数系统,通常使用数字0~9以及字母A、B(或X、E)来表示。其中,A(或X)即数字10,B(或E)即数字11。美国速记发明人艾萨克·皮特曼还曾创造过一种标记法,使用翻转的2和3来表示10和11。十二进制中的10代表十进制的12,也称为一打。同样的,十二进制的100代表十进制的144(=122),也称为一罗;十二进制的1000代表十进制的1728(=123),也称为一大罗;而十二进制的0.1则代表十进制的 1 12 {\displaystyle {\tfrac {1}{12}}}

十二进制到十进制的转换可按下面的例子进行:

十进制到十二进制的转换可按下面的例子进行:

123456 ÷ 12 = 10288 ... 0 10288 ÷ 12 =   857 ... 4   857 ÷ 12 =    71 ... 5    71 ÷ 12 =     5 ... 11 (B)     5 ÷ 12 =     0 ... 5

将最右排的数从下往上依次写下,即得到123456 = 5B54012

在十二进制中,很多分数能表示成有限小数的形式:


这些分数的共同特点是他们的分母都可以写成 2 i 3 j {\displaystyle 2^{i}3^{j}} 的形式,换句话说,他们的分母都是3-光滑数。

以下为在12进制中倍数的判别方法,由于小于12且与12互素的数只有1,5,7,11,而由于任何数都是1的倍数,且52=2x12+1,72=4x12+1,故5与7的倍数很好判别,而由于11=12-1,因此可仿照十进制中9的倍数之判别方式,来判别十二进制中11的倍数。

十二进制中的水仙花数有87个,不能再多了,因为目前已经有了证明,十二进制中最大的水仙花数就是那个51位数。(见OEIS A161949)

25:22+52=25
A5:A2+52=A5
577:53+73+73=577
668:63+63+83=668
A83:A3+83+33=A83

显然,任何一位数(从1到B)都是水仙花数,另外,在十二进制中,不存在四位数的水仙花数。

通常,日常生活中遇到与3或4有关的除法问题比起与5有关的更多,因而如果使用十二进制来计数比起十进制遇到循环小数的可能性更小。这也是有些人支持十二进制的原因,他们认为既然一年有十二个月(一天有十二时辰,半天有十二小时),使用十二进制在财务问题的计算上会方便很多。

但在真正遇到循环小数的时候,十二进制的表示比起十进制通常又会有更长的循环项。这是因为12位于两个素数11和13之间,而10则与一个合数9相邻。尽管如此,在更多的情况下我们都对数字进行修约,这点上的区别并不是那么明显。另外,由于12的因子分解中2出现了两次,而10只有一次,因而对于大多分母是2的幂的分数,十二进制的表示形式更简短。如1/22 = 0.25 = 0.312,1/23 = 0.125 = 0.1612,1/24 = 0.0625 = 0.0912,1/25 = 0.03125 = 0.04612,1/26 = 0.015625 = 0.02312,1/27 = 0.0078125 = 0.011612,1/28 = 0.00390625 = 0.006912,1/29 = 0.001953125 = 0.0034612,1/210 = 0.0009765625 = 0.0018312,1/211 = 0.00048828125 = 0.000A1612,1/212 = 0.000244140625 = 0.00050912等等。

无论对于十进制、十二进制还是其他以有理数为底数的记数系统,所有的无理数都只能表示成无限不循环小数。下表列出了一些代数无理数和超越无理数的十进制与十二进制的表示。

下面是另一个重要常数欧拉-马歇罗尼常数在十进制与十二进制中的表示(现在仍无法确定其是有理数还是无理数):

F·爱默生·安德鲁斯(F. Emerson Adnrews)在其1935年出版的著作《新的数字:接受十二进制使数学更简单》(New Numbers: How Acceptance of Duodecimal Base Would Simplify Mathematics)中详细地提出了一种基于十二进制的体系。安德鲁斯写到,由于12的因子在许多传统度量衡中很普遍,很多所谓米制在计算上的优势在十二进制中同样存在。

十二进制和十六进制与二十进制一样,一般都都以A代表10,而B代表11。而安德鲁斯在他的书中提出了一种新的方案,使用手写体的X和E,即 x {\displaystyle x\!} (U+1D4B3)和 E {\displaystyle {\mathcal {E}}\!} (U+2130)来分别代表10和11。原因是这两个符号能与其他的字母与数字很好地区别开,同时 x {\displaystyle x\!} 和X(即罗马数字10)很相像,而 E {\displaystyle {\mathcal {E}}\!} 则是单词eleven(即英文11)的首字母。

另一种知名的标记方法是艾萨克·皮特曼提出的,它主张用翻转的2表示10,水平翻转的3代表11(也就是 E {\displaystyle {\mathcal {E}}\!} )。这一方案被大不列颠十二进制协会(Donzel Society of Great Britain)所采用,其优势是与现有数字相似,比较容易辩认。而美国十二进制协会则用星号*和井号#分别代表10和11,原因在于*类似加上删除线的X、#类似加上双删除线的11,而且两者正好都能在电话拨号盘上找到。然而,批评者则指责说这些符号看起来完全不像数字。还有些系统用ɸ表示10(1与0的合体)以及交叉的十字+、x、或者†表示11。而所有这些符号的缺点是无法在计算器上通过七段LED数码管来显示( E {\displaystyle {\mathcal {E}}\!} 是个例外,但很多计算器上已经用E来表示错误信息了)。不过,10和11本身倒是能够在一个数码内显示(11显然可以,10需要进行翻转,如同O加上了长音符号,即ō或0)。A和B也可以做到这一点,只是B需要改用小写的b。

在美国动漫教学片《校舍摇滚》(Schoolhouse Rock!)的一集中,描绘了一个外星小孩使用十二进制算术的场景,分别用dek、el和doh作为10、11和12的名称,还使用安德鲁斯的符号 x {\displaystyle x\!} E {\displaystyle {\mathcal {E}}\!} 来表示10和11。(dek来自前缀deca,el是eleven的缩写,而doh是dozen的缩写)

美国十二进制协会和大不列颠十二进制协会都在促进十二进制在更大范围内的使用。他们还使用dozenal替代duodecimal(英语:十二进制),原因是后者来自拉丁语词根,用十进制的方法来表示12,即将12拆为了2和10。

知名数学家亚历山大·艾特肯(Alexander Craig Aitken)曾说“十二进制比十进制更易于掌握,使用十二进制进行计算会比用十进制快一半以上”,他还说如果十二进制的效率是100分的话,十进制只有65分或更低。

在里奥·弗兰克斯基(Leo Frankowski)的小说《康拉德·施塔加德》(Conrad Stargard)中,康拉德在商人中引入了一种十二进制的体系,其中的买卖都是以一打或一罗作为单位来计数的。他还发明了一整套十二进制的度量衡,包括每天只有12个小时的时钟。

支持过十二进制的还包括赫伯特·斯宾塞、约翰·昆西·亚当斯和萧伯纳等。

相关

  • 关节关节(拉丁语:Articulatio)在解剖学里指的是两块或两块以上的骨之间能活动的连接。在解剖学上有不动关节、动关节(连接处有液体)和微动关节(Amphiarthrosis)三种。不动关节有:例如尺
  • 乙部,是为汉字索引中的部首之一,康熙字典214个部首中的第五个(一划的则为第五个)。就正体中文中,乙部归于一划部首。而简体部首称“乛部”,而乙为‘乛部’的附形部首。乙部通常从
  • 有67人各国诺贝尔奖得主人数,以主权国家或地区区分计算诺贝尔奖得主总数与人均的列表,也计入诺贝尔经济学奖。。列表同时认可获奖之前(通常是出生地)及获奖当时这2种公民权。倘有双重
  • 美国空军美国空军(英语:United States Air Force,缩写:USAF)是美国军队中的空军军种。其任务是“通过空中、外太空和网络空间中的武力保护美国及其利益”,它于1947年9月18日正式成立。美国
  • 路易斯·艾伯2016年唐奖法治奖路易丝·艾伯(Louise Arbour,1947年2月10日-),前联合国人权事务高级专员,前加拿大最高法院助理法官,前南斯拉夫问题国际刑事法庭、卢旺达问题国际刑事法庭检察长。
  • GB 18030-2005GB 18030,全称《信息技术 中文编码字符集》,是中华人民共和国国家标准所规定的变长多字节字符集。其对GB 2312-1980完全向后兼容,与GBK基本向后兼容,并支持Unicode(GB 13000)的所
  • 皮革恋皮革恋或被称之为皮革拜物主义(英文:Leather Fetishism),指对皮革制作的物品特别喜爱,进而到迷恋的程度。这算是一种恋物癖(Fetishism),其是借由皮革之类的无生命物品来达到心理上
  • 液压机械液压机械(英语:hydraulic machinery)是通过流体力学原理增大机械力量的设备和工具,可应用于液压钳、手推液压叉车等小型工具,也可应用于一些重型设备中。以重型设备为例,液压液在
  • 石黑修石黑修(日语:石黒 修/いしぐろ おさむ ,1936年8月12日-2016年11月9日),日本前男子网球运动员。他曾在1966年亚洲运动会网球比赛中获得男子单打、男子双打和男子团体三个项目的金牌
  • 郑钦 (嘉靖进士)郑钦(?-?),字尧卿,直隶宁国府泾县人,明朝政治人物。嘉靖四十一年(1562年)壬戌科进士。由太常寺博士选户科给事中,历刑部郎中,仕至应天府尹,以病告归,不久卒。曾祖父郑逾;祖父郑昌;父郑珏,母汪