十二进制

✍ dations ◷ 2024-12-24 00:29:43 #进位制

十二进制是数学中一种以12为底数的记数系统,通常使用数字0~9以及字母A、B(或X、E)来表示。其中,A(或X)即数字10,B(或E)即数字11。美国速记发明人艾萨克·皮特曼还曾创造过一种标记法,使用翻转的2和3来表示10和11。十二进制中的10代表十进制的12,也称为一打。同样的,十二进制的100代表十进制的144(=122),也称为一罗;十二进制的1000代表十进制的1728(=123),也称为一大罗;而十二进制的0.1则代表十进制的 1 12 {\displaystyle {\tfrac {1}{12}}}

十二进制到十进制的转换可按下面的例子进行:

十进制到十二进制的转换可按下面的例子进行:

123456 ÷ 12 = 10288 ... 0 10288 ÷ 12 =   857 ... 4   857 ÷ 12 =    71 ... 5    71 ÷ 12 =     5 ... 11 (B)     5 ÷ 12 =     0 ... 5

将最右排的数从下往上依次写下,即得到123456 = 5B54012

在十二进制中,很多分数能表示成有限小数的形式:


这些分数的共同特点是他们的分母都可以写成 2 i 3 j {\displaystyle 2^{i}3^{j}} 的形式,换句话说,他们的分母都是3-光滑数。

以下为在12进制中倍数的判别方法,由于小于12且与12互素的数只有1,5,7,11,而由于任何数都是1的倍数,且52=2x12+1,72=4x12+1,故5与7的倍数很好判别,而由于11=12-1,因此可仿照十进制中9的倍数之判别方式,来判别十二进制中11的倍数。

十二进制中的水仙花数有87个,不能再多了,因为目前已经有了证明,十二进制中最大的水仙花数就是那个51位数。(见OEIS A161949)

25:22+52=25
A5:A2+52=A5
577:53+73+73=577
668:63+63+83=668
A83:A3+83+33=A83

显然,任何一位数(从1到B)都是水仙花数,另外,在十二进制中,不存在四位数的水仙花数。

通常,日常生活中遇到与3或4有关的除法问题比起与5有关的更多,因而如果使用十二进制来计数比起十进制遇到循环小数的可能性更小。这也是有些人支持十二进制的原因,他们认为既然一年有十二个月(一天有十二时辰,半天有十二小时),使用十二进制在财务问题的计算上会方便很多。

但在真正遇到循环小数的时候,十二进制的表示比起十进制通常又会有更长的循环项。这是因为12位于两个素数11和13之间,而10则与一个合数9相邻。尽管如此,在更多的情况下我们都对数字进行修约,这点上的区别并不是那么明显。另外,由于12的因子分解中2出现了两次,而10只有一次,因而对于大多分母是2的幂的分数,十二进制的表示形式更简短。如1/22 = 0.25 = 0.312,1/23 = 0.125 = 0.1612,1/24 = 0.0625 = 0.0912,1/25 = 0.03125 = 0.04612,1/26 = 0.015625 = 0.02312,1/27 = 0.0078125 = 0.011612,1/28 = 0.00390625 = 0.006912,1/29 = 0.001953125 = 0.0034612,1/210 = 0.0009765625 = 0.0018312,1/211 = 0.00048828125 = 0.000A1612,1/212 = 0.000244140625 = 0.00050912等等。

无论对于十进制、十二进制还是其他以有理数为底数的记数系统,所有的无理数都只能表示成无限不循环小数。下表列出了一些代数无理数和超越无理数的十进制与十二进制的表示。

下面是另一个重要常数欧拉-马歇罗尼常数在十进制与十二进制中的表示(现在仍无法确定其是有理数还是无理数):

F·爱默生·安德鲁斯(F. Emerson Adnrews)在其1935年出版的著作《新的数字:接受十二进制使数学更简单》(New Numbers: How Acceptance of Duodecimal Base Would Simplify Mathematics)中详细地提出了一种基于十二进制的体系。安德鲁斯写到,由于12的因子在许多传统度量衡中很普遍,很多所谓米制在计算上的优势在十二进制中同样存在。

十二进制和十六进制与二十进制一样,一般都都以A代表10,而B代表11。而安德鲁斯在他的书中提出了一种新的方案,使用手写体的X和E,即 x {\displaystyle x\!} (U+1D4B3)和 E {\displaystyle {\mathcal {E}}\!} (U+2130)来分别代表10和11。原因是这两个符号能与其他的字母与数字很好地区别开,同时 x {\displaystyle x\!} 和X(即罗马数字10)很相像,而 E {\displaystyle {\mathcal {E}}\!} 则是单词eleven(即英文11)的首字母。

另一种知名的标记方法是艾萨克·皮特曼提出的,它主张用翻转的2表示10,水平翻转的3代表11(也就是 E {\displaystyle {\mathcal {E}}\!} )。这一方案被大不列颠十二进制协会(Donzel Society of Great Britain)所采用,其优势是与现有数字相似,比较容易辩认。而美国十二进制协会则用星号*和井号#分别代表10和11,原因在于*类似加上删除线的X、#类似加上双删除线的11,而且两者正好都能在电话拨号盘上找到。然而,批评者则指责说这些符号看起来完全不像数字。还有些系统用ɸ表示10(1与0的合体)以及交叉的十字+、x、或者†表示11。而所有这些符号的缺点是无法在计算器上通过七段LED数码管来显示( E {\displaystyle {\mathcal {E}}\!} 是个例外,但很多计算器上已经用E来表示错误信息了)。不过,10和11本身倒是能够在一个数码内显示(11显然可以,10需要进行翻转,如同O加上了长音符号,即ō或0)。A和B也可以做到这一点,只是B需要改用小写的b。

在美国动漫教学片《校舍摇滚》(Schoolhouse Rock!)的一集中,描绘了一个外星小孩使用十二进制算术的场景,分别用dek、el和doh作为10、11和12的名称,还使用安德鲁斯的符号 x {\displaystyle x\!} E {\displaystyle {\mathcal {E}}\!} 来表示10和11。(dek来自前缀deca,el是eleven的缩写,而doh是dozen的缩写)

美国十二进制协会和大不列颠十二进制协会都在促进十二进制在更大范围内的使用。他们还使用dozenal替代duodecimal(英语:十二进制),原因是后者来自拉丁语词根,用十进制的方法来表示12,即将12拆为了2和10。

知名数学家亚历山大·艾特肯(Alexander Craig Aitken)曾说“十二进制比十进制更易于掌握,使用十二进制进行计算会比用十进制快一半以上”,他还说如果十二进制的效率是100分的话,十进制只有65分或更低。

在里奥·弗兰克斯基(Leo Frankowski)的小说《康拉德·施塔加德》(Conrad Stargard)中,康拉德在商人中引入了一种十二进制的体系,其中的买卖都是以一打或一罗作为单位来计数的。他还发明了一整套十二进制的度量衡,包括每天只有12个小时的时钟。

支持过十二进制的还包括赫伯特·斯宾塞、约翰·昆西·亚当斯和萧伯纳等。

相关

  • Netscape Communicator网景通信家族(英语:Netscape Communicator)是由网景公司1997年所开发的网络包。整个包包含Netscape Navigator(网页浏览器)、Netscape Messenger(电子邮件客户端软件)、Netscape Co
  • 一夫一妻单配偶制包含一夫一妻制,是指一种两两配对,每个个体只拥有单一配偶的关系,关系中两者一生中,或在生命中任何一个时间,只会与对方维持关系。单配偶制有别于多配偶制。单配偶制在动
  • 等温等温过程(英语:isothermal process)是热力学过程的一种,其中系统的温度不变:ΔT = 0。一个系统与外界的热源(热浴)接触,而过程进行得足够缓慢,使得系统不断通过热交换把温度调整为与
  • 台湾植物志《台湾植物志》共有二版,皆以英文撰写。第一版于1975年至1979年间陆续出版六卷,第二版则于1993年-2002年陆续出版,亦共六卷。内容为台湾维管束植物之记录,且是“对台湾维管束植
  • 忏悔节圣灰星期三之前一天 Summer Festival:忏悔星期二(源自法语:Mardi Gras,直译油腻的星期二,又称忏悔节)是圣灰星期三的前一天。在许多地方人们通过狂欢节、化妆舞会和化妆游行的方
  • 私家学校私立学校或称民办学校,一般指非由地方政府或者中央政府管理,全部或者部分的经费依靠学生的学费来维持学校经营而非公共资金,且校方有权自主选择生源的学校,与私立学校相对应的为
  • 黄金峡谷行动1986年美国空袭利比亚,美军代号为 “黄金峡谷”行动(Operation El Dorado Canyon)是美国空军,海军和海军陆战队于1986年4月15日联合执行的一次对利比亚的空袭行动。此次空袭行动
  • 瑞士信贷第一波士顿瑞士信贷第一波士顿(,缩写:),是瑞士信贷集团的投资银行部门。其母公司瑞士信贷集团是瑞士第二大的银行,仅次于它的长期竞争对手“瑞士联合银行”()。
  • 日中学院坐标:35°42′16.7″N 139°44′51.7″E / 35.704639°N 139.747694°E / 35.704639; 139.747694日中学院(日语:にっちゅうがくいん),是一所位于日本东京的中文学校。创立于1951
  • 密探《密探》(韩语:밀정,英语:,前称作)是一部2016年韩国剧情片,由金知云执导和撰写剧本,宋康昊和孔刘主演。2016年9月3日在第73届威尼斯影展上全球首映,2016年9月7日在韩国上映。上映后大