离散概率

✍ dations ◷ 2024-12-22 19:29:06 #离散概率
概率分布(德语:Wahrscheinlichkeitsverteilung;英语:probability distribution)或简称分布,是概率论的一个概念。使用时可以有以下两种含义:称X和Y为同分布的随机变量,当且仅当对任意事件 A ∈ F {displaystyle Ain {mathcal {F}}} ,有 P ( X ∈ A ) = P ( Y ∈ A ) {displaystyle mathbb {P} (Xin A)=mathbb {P} (Yin A)} 成立。但是,不能认为同分布的随机变量是相同的随机变量。事实上即使X与Y同分布,也可以没有任何点ω使得X(ω)=Y(ω)。在这个意义下,可以把随机变量分类,每一类称作一个分布,其中的所有随机变量都同分布。用更简要的语言来说,同分布是一种等价关系,每一个等价类就是一个分布。需注意的是,通常谈到的离散分布、均匀分布、伯努利分布、正态分布、泊松分布等,都是指各种类型的分布,而不能视作一个分布。F X ( a ) = P ( X ≤ a ) {displaystyle F_{X}(a)=mathbb {P} (Xleq a)} ,对任意实数 a {displaystyle a} 定义。具有相同分布函数的随机变量一定是同分布的,因此可以用分布函数来描述一个分布,但更常用的描述手段是概率密度函数(德语:Wahrscheinlichkeitsdichtefunktion,英语:probability density function, pdf)。对于特定的随机变量 X {displaystyle X} ,其分布函数 F X {displaystyle F_{X}} 是单调不减及右连续,而且 F X ( − ∞ ) = 0 {displaystyle F_{X}(-infty )=0} , F X ( ∞ ) = 1 {displaystyle F_{X}(infty )=1} 。这些性质反过来也描述了所有可能成为分布函数的函数:设 P {displaystyle P} 为概率测度, X {displaystyle X} 为随机变量,则函数 F ( x ) = P ( X ≤ x ) , ( x ∈ R ) {displaystyle F(x)=P(Xleq x),(xin mathbb {R} )} 称为 X {displaystyle X} 的概率分布函数。如果将 X {displaystyle X} 看成是数轴上的随机点的坐标,那么,分布函数 F ( x ) {displaystyle F(x)} 在 x {displaystyle x} 处的函数值就表示 X {displaystyle X} 落在区间 ( − ∞ , x ] {displaystyle (-infty ,x]} 上的概率。例如,设随机变量 X {displaystyle X} 为掷两次骰子所得的点数差,而整个样本空间由 36 个元素组成。其分布函数是:上面所列举的例子属于离散分布,即分布函数的值域是离散的,比如只取整数值的随机变量就是属于离散分布的。 F ( x ) {displaystyle F(x)} 表示随机变量 X ≤ x {displaystyle Xleq x} 的概率值。如果X的取值只有 x 1 < x 2 < . . . < x n {displaystyle x_{1}<x_{2}<...<x_{n}} ,则:二项分布是最重要的离散概率分布之一,由瑞士数学家雅各布·伯努利(Jakob Bernoulli)所发展,一般用二项分布来计算概率的前提是,每次抽出样品后再放回去,并且只能有两种试验结果,比如黑球或红球,正品或次品等。二项分布指出,随机一次试验出现的概率如果为 p {displaystyle p} ,那么在 n {displaystyle n} 次试验中出现 k {displaystyle k} 次的概率为:例如,在掷3次骰子中,不出现6点的概率是: f ( 3 , 0 , 1 6 ) = ( 3 0 ) ( 1 6 ) 0 ( 5 6 ) 3 = 0.579 {displaystyle f(3,0,{frac {1}{6}})={3 choose 0}left({frac {1}{6}}right)^{0}left({frac {5}{6}}right)^{3}=0.579} 在连续两次的轮盘游戏中,至少出现一次红色的概率为: f ( 2 , 1 , 18 37 ) + f ( 2 , 2 , 18 37 ) = 0.736 {displaystyle f(2,1,{frac {18}{37}})+f(2,2,{frac {18}{37}})=0.736}二项分布在 p = 0.5 {displaystyle p=0.5} 时表现出图像的对称性,而在 p {displaystyle p} 取其它值时是非对称的。另外二项分布的期望值 E ⁡ ( X ) = n p {displaystyle operatorname {E} (X)=np} ,以及方差 var ⁡ ( X ) = n p ( 1 − p ) {displaystyle operatorname {var} (X)=n,p,(1-p)!}作为离散概率分布的超几何分布尤其指在抽样试验时抽出的样品不再放回去的分布情况。在一个容器中一共有 N {displaystyle N} 个球,其中 M {displaystyle M} 个黑球, ( N − M ) {displaystyle (N-M)} 个红球,通过下面的超几何分布公式可以计算出,从容器中抽出的 n {displaystyle n} 个球中(抽出的球不放回去)有 k {displaystyle k} 个黑球的概率是多少:例如,容器中一共10个球,其中6个黑色,4个白色,一共抽5次(抽出的球不放回去),在这5个球中有3个黑球的概率是: f ( k = 3 ) = ( 6 3 ) ( 10 − 6 5 − 3 ) ( 10 5 ) = 0.476 {displaystyle f(k=3)={frac {displaystyle {6 choose 3}{10-6 choose 5-3}}{displaystyle {10 choose 5}}}=0.476}和二项分布不同的是,在超几何分布中,特别强调的是抽出的样品在下一次抽取前不再放回去,但是如果抽取的次数 n {displaystyle n} 和总共样品数 N {displaystyle N} 相比很小(大约 n / N < 0 , 05 {displaystyle n/N<0,05} ),这时在计算上二项分布和超几何分布相互间则没有主要的区别,此时人们更愿意采用二项分布的方法,因为在数学计算上二项分布要简单一些。泊松近似是二项分布的一种极限形式。其强调如下的试验前提:一次抽样的概率值 p {displaystyle p} 相对很小,而抽取次数 n {displaystyle n} 值又相对很大。因此泊松分布又被称之为罕有事件分布。泊松分布指出,如果随机一次试验出现的概率为 p {displaystyle p} ,那么在 n {displaystyle n} 次试验中出现 k {displaystyle k} 次的概率按照泊松分布应该为:其中,数学常数 e = 2.71828... {displaystyle e=2.71828...} (自然对数的底数)例如,某工厂在生产零件时,每200个成品中会有1个次品,那么在100个零件中最多出现2个次品的概率按照泊松分布应该是: f ( 100 , 0 , 1 200 ) + f ( 100 , 1 , 1 200 ) + f ( 100 , 2 , 1 200 ) = 0.986 {displaystyle f(100,0,{frac {1}{200}})+f(100,1,{frac {1}{200}})+f(100,2,{frac {1}{200}})=0.986}在实践中如果遇到 n {displaystyle n} 值很大导致二项分布难于计算时,可以考虑使用泊松分布,但前提是 n ⋅ p {displaystyle ncdot p} 必须趋于一个有限极限。采用泊松分布的一个不太严格的规则(通过展开二项分布,并在形式上化简为类似泊松分布后,利用极限化简即可得)是:设 X {displaystyle X} 是具有分布函数 F {displaystyle F} 的连续随机变量,且F的一阶导数处处存在,则其导函数称为 X {displaystyle X} 的概率密度函数。每个概率密度函数都有如下性质:第一个性质表明,概率密度函数与 x {displaystyle x} 轴形成的区域的面积等于1,第二个性质表明,连续随机变量在区间 [ a , b ] {displaystyle } 的概率值等于密度函数在区间 [ a , b ] {displaystyle } 上的积分,也即是与 X {displaystyle X} 轴在 [ a , b ] {displaystyle } 内形成的区域的面积。因为 0 ≤ F ( x ) ≤ 1 {displaystyle 0leq F(x)leq 1} ,且 f ( x ) {displaystyle f(x)} 是 F ( x ) {displaystyle F(x)} 的导数,因此按照积分原理不难推出上面两个公式。正态分布、指数分布、 t {displaystyle t} -分布, F {displaystyle F} -分布以及 Ξ 2 {displaystyle Xi ^{2}} -分布都是连续分布。连续随机变量的概率密度函数如果是如下形式,那么这个连续分布被称之为正态分布,或者高斯分布。其密度函数的曲线呈对称钟形,因此又被称之为钟形曲线,其中 μ {displaystyle mu } 是平均值, σ {displaystyle sigma } 是标准差。正态分布是一种理想分布,许多典型的分布,比如成年人的身高,汽车轮胎的运转状态,人类的智商值(IQ),都属于或者说至少接近正态分布。同样按照连续分布的定义,常态概率密度函数具有和普通概率密度函数类似的性质:如果给出一个正态分布的平均值 μ {displaystyle mu } 以及标准差 σ {displaystyle sigma } ,可以根据上面的第二个公式计算出任一区间的概率分布情况。但是如上的计算量是相当庞大的,没有计算机的辅助基本是不可能的,解决这一问题的方法是借助 z {displaystyle z} -变换以及标准正态分布表格( z {displaystyle z} -表格)。中间值 μ = 0 {displaystyle mu =0} 以及标准差 σ = 1 {displaystyle sigma =1} 的正态分布被称之为标准正态分布,其累积分布函数是将普通形式的正态分布变换到标准正态分布的方法是例如,已知一正态分布的 μ = 5 {displaystyle mu =5} , σ = 3 {displaystyle sigma =3} ,求区间概率值 P ( 4 < X ≤ 7 ) ? {displaystyle P(4<Xleq 7)?} 计算过程如下,其中 Φ ( z ) {displaystyle Phi (z)} 值通过查 z {displaystyle z} -表格获得。在离散分布中如果试验次数 n {displaystyle n} 值非常大,而且单次试验的概率 p {displaystyle p} 值又不是很小的情况下,正态分布可以用来近似的代替二项分布。一个粗略的使用正态分布的近似规则是: n ⋅ p ⋅ ( 1 − p ) ≥ 9 {displaystyle ncdot pcdot (1-p)geq 9} 。从二项分布中获得 μ {displaystyle mu } 和 σ {displaystyle sigma } 值的方法是如果 σ > 3 {displaystyle sigma >3} ,则必须采用下面的近似修正方法:(注: q = 1 − p {displaystyle q=1-p} ;EF:二项分布;ZF:正态分布)上(下)临界值分别增加(减少)修正值0.5的目的是在 σ {displaystyle sigma } 值很大时获得更精确的近似值,只有 σ {displaystyle sigma } 很小时,修正值0.5可以不被考虑。例如,随机试验为连续64次掷硬币,获得的国徽数位于32和42之间的概率是多少?用正态分布计算如下,n ⋅ p ⋅ q = 16 ≥ 9 {displaystyle ncdot pcdot q=16geq 9} ,符合近似规则,应用 z {displaystyle z} -变换:在运用 z {displaystyle z} -表格时注意到利用密度函数的对称性来求出 z {displaystyle z} 为负值时的区域面积。

相关

  • 班夫国家公园班芙国家公园(英语:Banff National Park,法语:Le Parc national Banff)建于1885年,是加拿大历史最悠久的国家公园。它坐落于落基山脉北段,距加拿大阿尔伯塔省卡尔加里以西约110-180
  • 水猿假说水猿假说(英语:Aquatic ape hypothesis,AAH)是对人类演化过程的一个假说,这个理论假设现代人类的共同祖先曾经度过一段半水栖时期,之后才又回到以陆地为主的生活方式。这个理论起
  • 皇甫谧皇甫.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger
  • 氨基转移酶转氨酶(Transaminase)是一种催化转氨基反应的转移酶,将氨基酸的α-氨基转移到一种α-酮酸上。人体内最重要的转氨酶为谷丙转氨酶和谷草转氨酶,都是肝功能测试的重要指标。EC 1.1
  • 链束植物门真蕨纲(Polypodiopsida),又称为链束植物(Monilophytes)是植物界中真叶植物下的两个演化支之一,是种子植物的姊妹群。真蕨纲比起较原始的石松门多了真正的叶子,但比起较进化的种子植
  • 眼虫属眼虫藻(学名:Euglena)是生物里的一个属,属于裸藻纲。其名字的来源是因为它们有眼斑,它与趋光有关。眼虫为长梭形或圆柱形而带扁平的单细胞藻体,由前端小凹陷生出细长鞭毛一条,其运
  • 判决先例判决先例(英语:precedent、或英语:authority;又称判例、先例、前例),在普通法体系下指的是根据先前的法律案件(legal case)而建立起的法律原则或规范。遵循先例(拉丁语:Stare decisis)
  • 田 波田波(1931年12月25日-2019年12月15日),男,山东桓台人。中国病毒学家。中国科学院院士。1931年12月生于山东省桓台县夏庄。高中时代先后就读于南京国立中央大学附属中学和青岛市立
  • 斯尼夫鲁斯尼夫鲁(希腊人称之为索利斯"Soris")是埃及第四王朝的创建者。现今对他的统治时期有着多种不同的估计,如《牛津古埃及历史》认为其统治期大约在公元前2613年-公元前2589年之间
  • 各州GDP本条目为主要财政年度德国各州的州内生产总值列表。以德国联邦统计局资料为依据,以本国货币欧元为基数。为增加可比性,辅以美元折算,美元折算汇率按联合国发布历年各国GDP本币