陶瓷电容

✍ dations ◷ 2025-04-28 14:52:30 #电容器

陶瓷电容器是以陶瓷为介电质的电容器。其结构是由二层或更多层交替出现的陶瓷层和金属层所组成,金属层连结到电容器的电极。陶瓷材料的成分决定了陶瓷电容器的电气特性及其应用范围,依稳定性可分为以下三类:

陶瓷电容器是电子设备中最常使用的电容,每年的产量约为一兆颗。其中最常用的是积层陶瓷电容器(MLCC),且有采用表面安装技术的元件。

陶瓷电容是有二个端子的非极性元件。早期最常使用陶瓷电容是碟型电容器,比晶体管问世的时间要早,在1930年代到1950年代就应用在许多的真空管设备(如广播接收器)中,后来陶瓷电容也广泛使用在晶体管设备中。至2007年止,由于陶瓷电容相较于其他低容值电容的高容量及低成本优势,陶瓷电容仍广泛使用在各种电子设备中。

陶瓷电容可分为以下几种不同的形状及様式:

一般贩售的陶瓷电容可分为以下三类:

以往曾经有贩售Class 4 陶瓷电容,其电气特性更差,但容积效率更好。不过先进的多层陶瓷电容可以在小封装内有更好的电气特性,因此取代了Class 4 陶瓷电容。

上述三类的电容大约对应低K(介电系数)、中K及高K的电容。三类的电容中没有哪一类是最好的,需针对应用需求选择适用的电容器。Class I 电容器体积比Class 3电容器要大,若只是用于旁路及非滤波器的用途时,电容器只需考虑成本及容积效率,其准确度、稳定性及损失系数都不是主要考量,此时不适合使用Class 1 电容器,因此Class 1 电容器主要用在滤波器中,此领域除了使用Class 1 陶瓷电容器外,低频应用还可以使用薄膜电容,射频的应用则需要用更复杂的电容器。Class 3电容器一般用在电源供应器中,此应用由于体积上的限制,除了Class 3电容器外很难找到其他适用的电容器,随着陶瓷技术的进步,陶瓷电容器的容值范围也逐渐扩大,目前最大可以到100 µF,许多应用已开始用陶瓷电容器来取代电解电容,陶瓷电容器的性能比会相同容值的电解电容要好,虽然其成本较电解电容要高,但随着技术的提升,其价格也越来越低。

陶瓷电容上会印有三位数的编码标示其电容值,前二个数字标示容值最高的二位数,最后一数字则标示10的次方,其单位为皮法拉 (pF)。数字后会有一个字母标示其电容允差范围。

例:一陶瓷电容标示104K,表示其容值为10×104 pF = 100,000 pF = 100 nF = 0.1 µF ±10%

EIA也有针对电容的温度系数有三个字的识别码。对于不是Class 1的非温度补偿型电容,第一个字对应工作温度的下限,第二个字为数字,对应工作温度的上限,第三个字对应在上述温度范围内的电容值变动:

一个标示Z5U的电容,其工作温度为+10°C至+85°C,容值变动范围在+22%至−56%之间。标示X7R的电容,其工作温度为-55°C至+125°C,容值变动范围在±15%之间。

温度补偿型电容也针对电容的温度系数有三个字的识别码,但规则和上述的不同。第一个字表示电容随温度的变动量,以ppm/°C来表示,第二个字是其10的乘幂,第二个字是电容随温度的变动量(以ppm/°C来表示)的最大允许误差,所以数值均是以25至85 °C为准:

一个标示C0G的电容,其容值不会随温度变化,误差在±30 ppm/°C之间,而标示P3K的电容,其容值飘移量为−1500 ppm/°C,最大误差在±250 ppm/°C。

除了EIA的电容识别码外,也有工业及军事应用的电容识别码。

陶瓷电容的电感性较其他主要电容器(薄膜电容或电解电容)要低,因此适用于高频的应用,一般可以到达数百MHz,若在电路上进行微调,甚至可以到达1GHz。若希望达到更高自共振频率,需要使用更昂贵及少见的电容,例如玻璃电容或云母电容。

以下分别列出一组C0G(温度补偿型)及X7R(非温度补偿型)陶瓷电容的自共振频率:

相较于钽质电容及电解电容,陶瓷电容在成本、可靠度及体积上都有竞争力,因此越来越多的应用会用陶瓷电容来取代钽质电容及小容值的铝电解电容,尤其应用在高频的开关电源或是旁路电容中。而且因为陶瓷电容的ESR低,因此可以配合较小的容值使用。

有些陶瓷电容会有轻微的颤噪效应(英语:microphonic),也就是将机械振动转换为电气噪声的情形。

相关

  • 八姓入闽八姓入闽(闽东语平话字:Báik Sáng Ĭk Mìng),是中国西晋晋怀帝永嘉时期(308年),中原地区人民为躲避战乱定居今福建省,主要有林、陈、黄、郑、詹、丘、何、胡八姓,其中有极少一部分
  • 雷明雷明(1939年-2010年4月23日),原名雷鸣,男,中国演员,北京电影制片厂演员。1960年代毕业于北京电影学院表演系,后入北京电影制片厂,担任演员。2010年4月23日因胰腺癌去世,享年71岁。
  • 有机合成有机合成是合成化学的一个分支,主要是经由各式各样的有机反应来建构有机分子。和无机分子相比,有机分子通常在结构上复杂许多,包括官能基、立体化学、多环构造等结构性细节。现
  • 韦恩州立大学韦恩州立大学(Wayne State University,简称: WSU)是一所美国公立大学,位于密歇根州底特律。2019年《美国新闻与世界报道》将其列在全国第205位,全国公立大学第112位。维恩州立大
  • 兰亭集会兰亭集会(又名兰亭修禊),指中国东晋永和九年(353年)三月初三,王羲之于会稽郡山阴之兰亭(现浙江绍兴西南)举办修禊集会,有谢安、谢万、孙绰、王玄之、王凝之、王徽之、王献之等四十多
  • GnashGnash 项目致力于发展一个播放Flash的免费媒体播放器或插件,来取代现有的Adobe Flash Player。Gnash项目是GNU项目中的高优先自由软件计划(High Priority Free Software Proje
  • 北京环路文化北京环路文化,是指北京与二环至六环诸环有关的环路文化。北京虽然有六环、“七环”之多,但是事实上却缺少一环,从二环开始算起,这是源于三环路的建设历史。三环路在建设过程中被
  • 阿迦汗三世阿加汗三世(真名为苏丹·穆罕默德—沙阿,1877年11月2日-1957年7月11日)印度政治家,伊斯兰教什叶派支派伊斯玛仪派第48代伊玛目(1885年起)。阿加汗三世出身于信德省一个富有的地主家
  • 1906年2月23日日食1906年2月23日日食是一次日偏食,发生于1906年2月23日(南极洲靠近国际日期变更线东侧的部分地区为2月22日)。新月当天(即朔日),地球上观测到月球和太阳的角距离极小,此时月球如果恰
  • 石桥美佳石桥美佳(8月25日-)是日本的女性声优,所属Groupimpact/剧团Alter-Ego。以前所属Bring-up。广岛县出身。