陶瓷电容

✍ dations ◷ 2025-10-30 12:21:42 #电容器

陶瓷电容器是以陶瓷为介电质的电容器。其结构是由二层或更多层交替出现的陶瓷层和金属层所组成,金属层连结到电容器的电极。陶瓷材料的成分决定了陶瓷电容器的电气特性及其应用范围,依稳定性可分为以下三类:

陶瓷电容器是电子设备中最常使用的电容,每年的产量约为一兆颗。其中最常用的是积层陶瓷电容器(MLCC),且有采用表面安装技术的元件。

陶瓷电容是有二个端子的非极性元件。早期最常使用陶瓷电容是碟型电容器,比晶体管问世的时间要早,在1930年代到1950年代就应用在许多的真空管设备(如广播接收器)中,后来陶瓷电容也广泛使用在晶体管设备中。至2007年止,由于陶瓷电容相较于其他低容值电容的高容量及低成本优势,陶瓷电容仍广泛使用在各种电子设备中。

陶瓷电容可分为以下几种不同的形状及様式:

一般贩售的陶瓷电容可分为以下三类:

以往曾经有贩售Class 4 陶瓷电容,其电气特性更差,但容积效率更好。不过先进的多层陶瓷电容可以在小封装内有更好的电气特性,因此取代了Class 4 陶瓷电容。

上述三类的电容大约对应低K(介电系数)、中K及高K的电容。三类的电容中没有哪一类是最好的,需针对应用需求选择适用的电容器。Class I 电容器体积比Class 3电容器要大,若只是用于旁路及非滤波器的用途时,电容器只需考虑成本及容积效率,其准确度、稳定性及损失系数都不是主要考量,此时不适合使用Class 1 电容器,因此Class 1 电容器主要用在滤波器中,此领域除了使用Class 1 陶瓷电容器外,低频应用还可以使用薄膜电容,射频的应用则需要用更复杂的电容器。Class 3电容器一般用在电源供应器中,此应用由于体积上的限制,除了Class 3电容器外很难找到其他适用的电容器,随着陶瓷技术的进步,陶瓷电容器的容值范围也逐渐扩大,目前最大可以到100 µF,许多应用已开始用陶瓷电容器来取代电解电容,陶瓷电容器的性能比会相同容值的电解电容要好,虽然其成本较电解电容要高,但随着技术的提升,其价格也越来越低。

陶瓷电容上会印有三位数的编码标示其电容值,前二个数字标示容值最高的二位数,最后一数字则标示10的次方,其单位为皮法拉 (pF)。数字后会有一个字母标示其电容允差范围。

例:一陶瓷电容标示104K,表示其容值为10×104 pF = 100,000 pF = 100 nF = 0.1 µF ±10%

EIA也有针对电容的温度系数有三个字的识别码。对于不是Class 1的非温度补偿型电容,第一个字对应工作温度的下限,第二个字为数字,对应工作温度的上限,第三个字对应在上述温度范围内的电容值变动:

一个标示Z5U的电容,其工作温度为+10°C至+85°C,容值变动范围在+22%至−56%之间。标示X7R的电容,其工作温度为-55°C至+125°C,容值变动范围在±15%之间。

温度补偿型电容也针对电容的温度系数有三个字的识别码,但规则和上述的不同。第一个字表示电容随温度的变动量,以ppm/°C来表示,第二个字是其10的乘幂,第二个字是电容随温度的变动量(以ppm/°C来表示)的最大允许误差,所以数值均是以25至85 °C为准:

一个标示C0G的电容,其容值不会随温度变化,误差在±30 ppm/°C之间,而标示P3K的电容,其容值飘移量为−1500 ppm/°C,最大误差在±250 ppm/°C。

除了EIA的电容识别码外,也有工业及军事应用的电容识别码。

陶瓷电容的电感性较其他主要电容器(薄膜电容或电解电容)要低,因此适用于高频的应用,一般可以到达数百MHz,若在电路上进行微调,甚至可以到达1GHz。若希望达到更高自共振频率,需要使用更昂贵及少见的电容,例如玻璃电容或云母电容。

以下分别列出一组C0G(温度补偿型)及X7R(非温度补偿型)陶瓷电容的自共振频率:

相较于钽质电容及电解电容,陶瓷电容在成本、可靠度及体积上都有竞争力,因此越来越多的应用会用陶瓷电容来取代钽质电容及小容值的铝电解电容,尤其应用在高频的开关电源或是旁路电容中。而且因为陶瓷电容的ESR低,因此可以配合较小的容值使用。

有些陶瓷电容会有轻微的颤噪效应(英语:microphonic),也就是将机械振动转换为电气噪声的情形。

相关

  • 台湾桥头地方法院高雄市桥头区经武路911号(07)6110030 冈山简易庭:高雄市冈山区冈山南路57号 旗山简易庭:台湾桥头地方法院,简称桥头地方法院、桥头地院,是台湾的地方法院之一,位于高雄市桥头
  • 四大贝勒后金的建立者努尔哈赤死时,皇太极继承大汗位置,但与其他三位亲王一同主持朝政。因大汗与另三位亲王在天命年间均被册封为旗主和硕贝勒,故此段时期被称为四大贝勒时期。按年资齿
  • 希腊化美学始于公元前四世纪末马其顿王的儿子亚历山大征服欧亚非,其死后帝国分裂,各王朝统治者都是希腊人,推行希腊化政策,公元前30年被罗马帝国征服之后的古罗马美学始于公元前一世纪:追
  • 埃托雷·马约拉纳埃托雷·马约拉纳(意大利语:Ettore Majorana,意大利语:,1906年8月5日-1938年3月27日?)是一名意大利理论物理学家。他是中微子质量研究的先驱,并提出了马约拉纳方程。1938年左右离奇失
  • 第21届日本电影学院奖第21回日本电影学院奖于1998年3月6日公布并举行颁奖仪式。
  • 陈少梅陈少梅(1909年-1954年9月9日),名云彰,又名云鹑,字少梅,号升湖,中国山水画家,他是金北楼的学生,湖社成员,曾主持湖社天津分会。与齐白石、张大千、溥心畬并称四大画家。陈少梅的父亲陈嘉
  • 枫叶街的房子《枫叶街的房子》是史蒂芬·金所写的短篇小说,1993年收录在短篇小说集《恶梦工厂》内。梅丽莎是家中的小妹,一天在家发现墙中有怪声,于是找来哥哥姐姐看看墙中有什么。他们见到
  • 杜洪杜洪(9世纪-905年),晚唐军阀,从光启二年(886年)起控制武昌,直至被杨行密击败俘虏并诛杀。杜洪生年不详,是武昌军部鄂州人,年轻时当过演戏的伶官。唐僖宗乾符(874年 - 879年)末年,唐朝的很
  • 邓波清邓波清(1963年10月-),中华人民共和国政治人物、外交官。曾任外交部机关党委常务副书记、局长。现任国家国际发展合作署副署长。
  • 明海大学明海大学是一所本校区位于日本国千叶县的私立大学。通常简称为明海大或明海。1970年,创立名为城西歯科大学。而在1988年,加设外国语部,和经济学部。随后改名为明海大学期望培育