分裂四元数

✍ dations ◷ 2025-11-26 11:31:05 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 零级反应在化学中,零级反应(zero-order reaction),(亦称为零次反应)是指反应级数为0的化学反应。零级反应的例子有:对于反应   A →
  • 各国各产业国内生产总值列表这里列出各国国内生产总值中各产业所占成分。此表根据的是美国中央情报局的《世界概况》中提供的国内生产总值(按国际汇率和购买力平价计算)和各产业所占比重进行估算,即按官方
  • 流亡流亡或逃亡,指任何人或团体,因为自然灾害、受到侵略、迫害(包括政治迫害)或其他负面因素而离开出生或定居的国家、地区。流亡未必指在国外流亡,如唐玄宗幸蜀,也可以称做流亡。
  • 费奥多尔·丘特切夫费奥多尔·伊万诺维奇·丘特切夫(俄语:Фёдор Иванович Тютчев,1803年12月5日布良斯克 - 1873年7月27日圣彼得堡),俄罗斯诗人,与亚历山大·普希金和米哈伊尔·
  • 路易十世 (法兰西)(爱争吵的)路易十世(Louis X le Hutin,1289年10月4日-1316年6月5日)卡佩王朝第12位国王(1314年—1316年在位),纳瓦拉国王(1305年—1316年,称路易一世)。他是腓力四世(美男子)的长子,母为纳
  • 金贤珠金贤珠(韩语:김현주,1977年4月24日-),韩国女演员。
  • 世嘉电子游戏机列表世嘉是一间电子游戏开发、发行与硬件生产公司,其总部位于日本东京都,并在全球各地设有分公司。公司自1983年起制造家用游戏机和掌上游戏机,所产主机横跨第三世代到第六世代。世
  • 洛兰特·汝拉洛兰特·汝拉(匈牙利语:Lóránt Gyula,匈牙利语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
  • 陆宝 (藏书家)陆宝,明末清初藏书家。字敬身,另字青霞,号中条,浙江鄞县(今属宁波市海曙区)人。。为晚明太学生,授中书舍人。崇祯朝时,上书请让自己赴辽东抗敌,后来回乡养老。明亡后,清顺治元年,浙东起
  • 圣女欧斐米堂坐标:45°26′35.40″N 10°59′36.52″E / 45.4431667°N 10.9934778°E / 45.4431667; 10.9934778圣女欧斐米堂(Basilica di Sant'Eufemia)是意大利威尼托大区城市维罗纳的一