分裂四元数

✍ dations ◷ 2025-05-11 09:00:04 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 原发性醛固酮增多症原发性高醛固酮症(Primary aldosteronism),又称康氏症(Conn's syndrome),是肾上腺生产过量醛固酮而造成肾素水平下降而导致的一种疾病,通常症状不严重。大多数人会引起高血压,导致视
  • 杰克·施泰因贝格尔杰克·施泰因贝格尔(德语:Jack Steinberger,1921年5月25日-),生于德国巴特基辛根,德国裔美国物理学家。1962年他与利昂·莱德曼和梅尔文·施瓦茨一起发现了
  • 反应停事件反应停事件始于1950年代,多个国家的孕妇在服用止吐药“反应停”(沙利窦迈(Thalidomide))后,在全世界共产下了约1.2万名畸形儿。1961年11月起,“反应停”陆续在各国被强制撤回。德国
  • 完全变态完全变态,又叫变异、蜕变,是昆虫发育的一种类型。幼虫和成虫形态不同,生活方式和生活环境也不一致。虫体自卵孵化后,从幼虫到成虫要经过一个蛹期(这在不完全变态中没有的),在蛹期体
  • 冨岳三十六景《富岳三十六景》,浮世绘画师葛饰北斋晚年的作品之一,属于浮世绘中的“名所绘”,为描绘由日本关东各地远眺富士山时的景色。初版只绘制36景,因为大受好评,所以葛饰北斋仍以《富岳
  • 东学东学(朝鲜语:동학/東學 ),是朝鲜王朝末期出现的一种朝鲜半岛本土新兴宗教。东学字面意思为东方之学,与当时东进的西学相对,由庆州人崔济愚于1860年创建,是韩国天道教的前身。东学除
  • 毕力格·达木丁苏伦毕力格·达木丁苏伦(蒙古语:Билэгийн Дамдинсүрэн,1919年-1992年)蒙古族,蒙古人民共和国作曲家。达木丁苏伦被视为蒙古传统音乐的创始人之一。他将传统的民间
  • 四川钻螺四川钻螺(学名:)为钻头螺科钻螺属的动物,是中国的特有物种。分布于四川、长江流域一带等地,生活环境为陆地,多栖息于农田、住宅、公园、寺庙附近潮湿的草丛、瓦砾堆中、公园花卉、
  • 砌体结构砌体结构是砖材与石材结构的合称,相对木结构而言强度更高,耐久性更好,故多用来建造重要的宗教、军事、政治建筑。中国早期的砌体结构的代表建筑有万里长城。中国砖石作为建筑材
  • 神奇动物在哪里 (电影)《神奇动物在哪里》(英语:)是一部于2016年上映的奇幻电影,由大卫·叶茨执导,改编自J·K·罗琳创作的同名2001年书籍,该片亦是她的编剧处女作。该片为哈利·波特系列电影的衍生及前