分裂四元数

✍ dations ◷ 2025-07-09 16:04:20 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 红外线温度计红外线温度计,分为固定式测温仪与手持式测温枪是一种利用侦测物体表面的红外线量进而达成温度测量的温度计。因为红外线量越大说明温度越高,所以可以使用红外线测量温度,测量范
  • 次方幂运算(英语:Exponentiation),又称指数运算,是数学运算,表达式为 b n {\displa
  • 费米子在粒子物理学里,费米子(英语:fermion)是遵守费米-狄拉克统计的粒子。费米子包括所有夸克与轻子,任何由奇数个夸克或轻子组成的复合粒子,所有重子与很多种原子与原子核都是费米子。
  • font style=text-decoration: overlineb/font底夸克是带有电荷−1⁄3 e的 第三代夸克,又称为美夸克。虽然量子色动力学描述每一种夸克的方法都很类似,由于底夸克带有很大的裸质量(英语:bare mass)(约为7000420000000000000♠
  • 散乱蛋白结构 / ECOD 散乱蛋白(英语:Dishevelled,Dsh)是涉及钙离子与非钙离子Wnt信号通路的蛋白质家族。Dsh是一种胞浆内的磷酸化蛋白,作为卷曲受体的下游信号分子。其得名于在果蝇中最初
  • 詹姆斯·布朗小詹姆斯·乔瑟夫·布朗(英语:James Joseph Brown, Jr.,1933年5月3日-2006年12月25日),非洲裔美国歌手,有“灵魂乐教父”之称,被认为对20世纪的流行音乐有至深的影响。詹姆斯·布朗
  • 安藤誓哉安藤誓哉(日语:安藤 誓哉,Andō Seiya,1992年7月15日-),是日本著名的篮球运动员,常以东京电击队员身份参加日本的B联赛。同时安藤誓哉是第一个参加加拿大国家篮球联赛的日本篮球运动
  • ALDNOAH.ZERO角色列表ALDNOAH.ZERO角色列表为日本动画《ALDNOAH.ZERO》及其外传登场的角色。
  • 大阪经济法科大学大阪经济法科大学(日语:大阪経済法科大学/おおさかけいざいほうかだいがく;英语:Osaka University of Economics and Law)是一所位于日本大阪府的私立大学,创立于1971年。该校的创
  • 菲特里湖菲特里湖(Lac Fitri)是乍得中部的一座淡水湖,位于恩贾梅纳以东300公里,巴塔区的阿提以西约100千米,湖泊面积约5万公顷,湖水浅,在雨季的面积增加至平时的3倍,湖水由来自季节性雨水的