分裂四元数

✍ dations ◷ 2025-02-24 05:08:02 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 抗生素抗药性抗生素抗药性(antibiotic resistance)是抗药性的一种形式,借此特性,一些微生物亚群体,通常是细菌种,能够在暴露于一或多种抗生素之下得以生存;对多种抗生素具抗药性的病原体被视为
  • 胆道胆管为胆汁由肝脏传送至十二指肠的一个管道。肝内的胆小管逐级合并成左、右肝管,出肝门再合成为肝总管;肝总管与胆囊管汇合成胆总管。肝细胞持续不断的制造胆汁浓缩并储存于胆
  • 健康管理健康管理系统(英语:Health management system)属进化医学或演化医学的范畴,是指一个专业的计量系统,透过对个人或人群的健康危险因素进行监测、评估、指导的全过程,其宗旨是调动个
  • 心脏瓣膜尖心瓣(heart valve),又称心瓣膜、心脏瓣膜,是心脏中内类似阀的构造,用以维持血液循环在心脏中的单向流动,防止血液倒流。哺乳动物的心脏通常具有四个瓣膜,决定了血液的流向。心瓣前
  • 美国国立自然史博物馆美国国立自然历史博物馆(National Museum of Natural History)是一家位于美国华盛顿哥伦比亚特区的博物馆,由国立博物馆机构史密森尼学会管理,于1910年启用。2009年时上映的美国
  • 甲子兰酒文物馆坐标:24°45′26″N 121°44′57″E / 24.757100°N 121.749210°E / 24.757100; 121.749210甲子兰酒文物馆为台湾烟酒股份有限公司宜兰酒厂内的文物馆,位于宜兰县宜兰市。该
  • 王志东王志东(1967年6月28日-),生于广东省东莞市,中国互联网先驱创业者,新浪网的创始人之一,毕业于北京大学。他与丁磊、张朝阳并称为"网络三剑客"。1988年,王志东毕业于北京大学无线电电
  • 名利场 (杂志)《名利场》(英语:)是一本美国文化、时尚和政治杂志,由康得纳斯出版公司出版。最初的名利场出版于1913年,1935年后因为大萧条导致销量大幅下降而停刊。1981年复刊,如今除美国本土外
  • 斯德望二世 (埃及)斯德望二世(阿拉伯语:إسطفانوس الثاني غطاس‎;Stéphanos II Ghattas, C.M.;1920年1月16日-2009年1月20日)俗名加塔斯,是与罗马天主教会共融的埃及科普特礼天主
  • 列奥·约基希斯列奥·约基希斯(德语:Leo Jogiches,1867年7月17日-1919年3月10日),波兰、立陶宛、德国马克思主义革命家。1893年,波兰王国和立陶宛社会民主党(波兰共产党前身)创始人,第一次世界大战斯