分裂四元数

✍ dations ◷ 2025-09-15 13:54:07 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 淋巴管炎症淋巴管发炎(英语:lymphangitis)指的是病灶处到远端的淋巴系统之间,淋巴管的发炎或感染。最常见的病因是化脓链球菌(英语:Streptococcus pyogenes) (A组 链球菌),其次为申克氏孢子丝菌
  • 墨子墨子(前468年?-前376年),子姓,墨氏,名翟,春秋末战国初期宋国(今河南商丘)人,一说鲁国(今山东滕州木石镇)人,是中国战国时期著名思想家、政治家、科学家、军事家。提出了“非儒”、“兼爱”
  • 磷酸果糖-磷酸果糖激酶(英语Phosphofructokinase;PFK)是一类激酶,可作用于果糖-6-磷酸。可分为两种,分别产生不同产物:EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22  
  • 帕凡舞帕凡舞(Pavane,中文也有译作“孔雀舞”)是一种偶数类拍子,简单的庄重的慢步舞,通常伴有伽利阿德舞。在16,17世纪欧洲达到全盛,当时帕凡舞是身份的象征。但1636年后这种社交舞就完
  • 儒学四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤 
  • 田纳西河田纳西河(Tennessee River)位于美国东南部,是俄亥俄河的最大支流。源出田纳西州的阿巴拉契亚山脉西坡,向西南流经亚拉巴马州北部,并与密西西比州形成一小段边界,再回到田纳西州转
  • 北拉勒米河北拉勒米河(英语:North Laramie River)是拉勒米河的一条支流,长约139.0千米 ,位于美国怀俄明州的东南部。坐标:42°07′36″N 104°55′28″W / 42.12667°N 104.92444°W / 42.12
  • 皇寺镇皇寺镇是中国河北省邢台市邢台县下辖的一个镇。皇寺镇下辖皇寺村、东羊卧村、八方村、西青山村、南青山村、潭村、郭村、徐村、苏村、谈话村、西羊卧村、温暖河村、东寺村、
  • BamHI结构 / ECODBamHI(亦可写作BamH1)是一种常用的II型限制性核酸内切酶。BamHI最早取自淀粉芽孢杆菌(英语:Bacillus amyloliquefaciens)()中。G G A T C CC C T A G G
  • 秘密客2《秘密客2》(英语:Mimic 2)是一部2001年的美国科幻惊悚电影,由让·德·塞贡扎克(英语:Jean de Segonzac)执导,艾莉丝·高朗士、布鲁诺·坎波斯主演。为1997年电影《秘密客》的续集。