分裂四元数

✍ dations ◷ 2025-12-09 07:45:39 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 佛蒙特佛蒙特州(英语:State of Vermont,i/vərˈmɒnt/))是美国第14个州,以其美丽的景色、奶制品、枫糖浆和激进的政治而著称。佛蒙特总共拥有14个县。这14个县,辖下有255个政治单位或地
  • 阿蒙霍特普二世阿蒙霍特普二世(Amenhotep II)是古埃及第十八王朝第七位法老,在位约26年(约公元前1427年—约公元前1401年在位),是图特摩斯三世之子。阿蒙霍特普二世在即位初期与父亲共同执政,在位
  • 联邦君主制联邦君主制是一种政治体制,指的是联邦制国家遵奉一位君主为整个联邦的唯一国家元首,但在政府运作上则没有一般单一制君主立宪政体的特征;换言之,联邦下的每个邦皆仍得保有其原有
  • 唐诗三百首《唐诗三百首》是一部流传甚广的唐诗选集,编者是清朝的孙洙(蘅塘退士)与其夫人徐兰英,成书于乾隆年间(公元1763年)时。道光年间,上元女史陈婉俊(字伯英)与其弟陈晋蕃补注。共收录了77
  • 鹿鸣广场国立台湾大学鹿鸣广场是位于国立台湾大学鹿鸣堂、地理系馆、共同教室和生命科学系馆之间的中型空地。2000年8月5日台北市政府同意封闭舟山路后,改造计划就此展开。透过特殊曲
  • 召陵区.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 要敢于认识要敢于认识( 拉丁语:Sapere aude)拉丁短语的意思是“敢于知道!” 这句话最初用于罗马诗人霍拉蒂乌斯的书信(公元前20年),被引用为启蒙的座右铭, 由伊曼纽尔康德 在“启蒙的回答” (17
  • 阮文顺可敬者阮文顺(越南语:Đấng Đáng Kính François-Xavier Nguyễn Văn Thuận;1928年4月17日-2002年9月16日)是南越籍天主教执事级枢机。在世时曾任宗座正义与和平委员会主席
  • Mont BlancMont Blanc可以指
  • 谢承谢承 (?年-?年),字伟平,东汉会稽山阴人。孙权的夫人之弟。任吴郡督邮。谢夫人卒后,拜五官郎中,后迁长沙东部都尉、武陵郡太守。谢承博学洽闻,读书终生不忘,尤熟东汉史事,撰《后汉书》1