分裂四元数

✍ dations ◷ 2025-12-10 21:33:18 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 疑病症疑病症(英语:Hypochondriasis),也作疑病性神经症(Hypochondriacal neurosis)、虑病症,是指对自身出现的一些身体状况作出不合实际的解释,担心自己身患一种极为严重的疾病。疑病症患
  • 东方集团东方集团为冷战期间西方阵营对中欧及东欧的前社会主义国家的称呼,其范围大致为苏联及华沙条约组织的成员国。与这一称呼类似的“苏联集团”和“苏东集团”同样代指与苏联同盟
  • Google BooksGoogle图书(英语:Google Books)是一个由Google研发的搜索工具,它可以自Google所扫描、经由光学字符识别(OCR)、存储的数字化数据库中搜索数据。此服务于2004年10月在法兰克福书展
  • 齐语齐语可以指:
  • 贝宁人民共和国贝宁人民共和国 (法语:République populaire du Bénin)是西部非洲国家贝宁在1975年11月30日至1990年3月1日期间的国号,总统为马克思主义政治强人马蒂厄·克雷库,该政权的执政党
  • ATC代码 (A14)A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码A14(系统用药的同化剂)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Co
  • 安肯帕格里国家森林安肯帕格里国家森林(英语:Uncompahgre National Forest)是是美国的一处国家森林,占地面积约3,865.68平方公里,南接圣胡安国家森林,横跨科罗拉多州西部的多个县,以占地面积排序依次
  • 罗丹明罗丹明(Rhodamine;发音为/ˈroʊdəmiːn/),又名若丹明或玫瑰红,是一系列相关的萤光酮杂环化合物,可用作染料,当中常见的有罗丹明6G、罗丹明B、罗丹明123、罗丹明WT等。可用作染料
  • 固体潮固体潮也称陆潮,是指在太阳、月球等天体引力作用下,固体地球产生周期性变化的现象。因为固体地球具有一定弹性,所以在受到其他天体的引力时,跟海洋一样会产生变形。这些变形的实
  • 高伯龙高伯龙(1928年6月29日-2017年12月6日),广西岑溪人,生于广西南宁,中国激光陀螺专家,中国工程院院士,国防科技大学教授。