分裂四元数

✍ dations ◷ 2025-12-10 08:37:17 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 代尔夫特理工大学代尔夫特理工大学(荷兰语:Technische Universiteit Delft)是世界上顶尖的理工大学之一。代尔夫特理工大学位于荷兰代尔夫特市,是荷兰规模最大最具有综合性的理工大学,拥有超过150
  • 凤邑城隍庙凤邑城隍庙,又称凤山城隍庙、凤山县城隍庙,址于高雄市凤山区凤明街。主祀凤山县城隍显佑伯,配祀文武判官、阴阳司、廿四司、范谢将军等神祇;后殿祀奉东岳大帝、十殿阎王。凤山县
  • 浮士德 (歌剧)《浮士德》(法语:Faust)为法国作曲家古诺所创作的五幕大歌剧(英语:Grand opera)。剧情根据德国大文豪哥德的悲剧《浮士德》第一部(Faust. Der Tragödie erster Teil)所改编,剧本创作
  • 都铎式建筑都铎式建筑(Tudor architecture)是流行于英格兰都铎王朝的一种建筑风格,都铎式拱和凸肚窗是都铎式建筑的典型特征。它属于中世纪建筑的范畴。在亨利八世解散修道院之后,从教会那
  • 杜阿木忒弗在埃及神话中,杜阿木忒弗,或作朵母泰夫和多姆太夫(Duamutef,Tuamutef;Golden Dawn,Thmoomathph)是葬礼之神、霍尔的四子之一,在他们看管的四个罐子(canopic jars)中他看管装着胃的罐子
  • 刘文彩刘文彩(1887年-1949年10月17日),字星廷,生于中国四川大邑县安仁镇人,著名的大地主,民国时期军阀刘文辉之兄。刘文彩其人在中华人民共和国的文化大革命中被宣传为“无恶不作”的大地
  • 逻辑单元号在计算机存储中,逻辑单元号或LUN(Logical Unit Number)是用以标记逻辑单元的编号。数据单元(Logical Unit)是指由封装有如光纤通道、iSCSI接口的小型计算机系统接口的以iSCSI
  • Mp3tagMp3tag是一套编辑各种不同音乐文件格式元数据(像是ID3、APE tag)的免费软件。除了编辑各种音乐文件格式的元数据,它可以利用文件本身所拥有的元数据来替文件重命名,以利文件的整
  • 米蕾拉·德米瑞瓦米蕾拉·德米瑞瓦(保加利亚语:Мирела Демирева;1989年9月28日-),是一名保加利亚女子跳高运动员,她以1.97米的成绩获得2016年里约奥运会女子跳高银牌。
  • JUNNAJUNNA(2000年11月2日-,本名:境纯菜)是日本的女歌手,爱知县出身。