分裂四元数

✍ dations ◷ 2025-11-09 02:27:00 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 絮凝水处理时,会透过常不同药剂进行絮凝以利除去水中悬浮物质,例如为混拟使用之硫酸铝、氯化铁、PAC等混拟剂等,以及强化胶凝作用之各种助凝剂等,为调整酸碱度之石灰、苏打等碱剂,或
  • 荷兰政党列表荷兰属于多党制,通常由多个政党组成执政联盟。2017年4月,各党在国会一院(参议院)、国会二院(众议院)和欧洲议会席次:荷兰政府与政治 系列条目
  • 巴通期巴通期(英语:Bathonian)是侏罗纪的第七个时期,年代大约位于168.3–166.1百万年前。
  • 绪方洪庵绪方洪庵(平假名:おがた こうあん,1810年8月13日-1863年7月25日),是江户时代(幕末时期)的一位医生、兰学家、教育家。绪方洪庵因在日本的锁国时代将西方的医学知识引入到日本,于1838
  • 阻抗阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗是一个复数,实部称为电阻,虚部称为电抗;其中电容在电路中对交流电所起的阻碍作用称为容抗,电
  • 五十岚喜芳五十岚喜芳(1928年9月8日-2011年9月23日)是出生于日本兵库县的歌唱家。
  • 坎塔布里亚联合左翼坎塔布里亚联合左翼(西班牙语:Izquierda Unida de Cantabria)是西班牙左翼政党联盟联合左翼在坎塔布里亚自治区的分支。它成立于1986年,主要成员是坎塔布里亚共产党。它的政治立
  • 八岛莎拉拉八岛莎拉拉(6月4日-)是日本的女性声优,大阪府出身,事务所为Amuleto。血型A型,身高161公分。2011年以“Raymee Heavenly”(レイミー・ヘヴンリー)名义进入Afilia Sherry's(日语:Stand-U
  • 绿肥绿肥即可以翻犛入土壤中作为肥料或改良土壤的植物,这包括其种子和植物本身。印度农民数千年来都了解绿色肥料的价值。在古希腊,农民也将蚕豆种植在土壤中。千年以前的中国农业
  • 宏正自动科技宏正自动科技(ATEN International Co., Ltd.),简称宏正科、宏正、ATEN,是一间生产电脑周边设备的公司,于1979年成立。主力三大产品线包括IT架构管理解决方案、专业影音解决方案、