分裂四元数

✍ dations ◷ 2025-12-08 19:17:05 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 辅酶Q6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione辅酶Q10(Coenzyme Q10,CoQ10),又称泛醌(Ubiquinone,UQ)、辅酶Q(Coenzyme Q,CoQ),商品名悠卡诺(ubidecarenone),是一种存在于所有行有氧
  • 一群犬只在1950年代到1960年代之间,苏联太空署使用一群犬只进行次轨道和轨道上的太空飞行,以确认人类太空飞行的可行性。在成为太空犬之前,这些犬只是莫斯科的流浪犬。在1950年代到1960
  • 海岬海岬或陆岬、海角,台语称海鼻(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Ari
  • 高积云高积云(英语:Altocumulus)是中云的一类,云块较高层云小,但可清晰分辨轮廓,有时出现在两个或以上的高度,高积云较薄时呈白色,在较厚时呈暗灰色。高积云云状可以是扁圆形、瓦片状等,
  • 朝鲜人民军FM广播电台朝鲜人民军FM广播电台(朝鲜语:조선인민군FM방송/朝鮮人民軍FM放送)是朝鲜朝鲜人民军的调频广播电台。在2009年5月正式开播,主要在朝韩非军事区广播。2009年初,以前线哨兵放送的名
  • 皮埃尔·迪昂皮埃尔·迪昂(法语:Pierre Duhem,1861年6月9日-1916年9月14日),法国物理学家、科学史家与科学哲学家。迪昂主要以其在化学热力学领域的工作、对实验非充分决定性的科学哲学探讨以
  • 玛丽亚·伊莎贝拉公主 (西班牙)玛丽亚·伊莎贝拉(英语:Maria Isabella,1789年7月6日-1848年9月13日)是两西西里王国王后和西班牙公主。她是两西西里国王弗朗切斯科一世的第二任妻子。伊莎贝拉是西班牙国王卡洛
  • 国际土木工程历史古迹美国土木工程师学会(American Society of Civil Engineers)自1964年开始逐年评选出世界上有里程碑意义的工程建筑、古迹,授予国际土木工程历史古迹称号,并于古迹所在地,立铜匾石
  • 蒋风之蒋风之(1908年4月27日-1986年1月26日),江苏宜兴人,中国二胡演奏家及教育家。蒋风之1908年4月27日生于中国江苏省宜兴市。自小就喜欢音乐,十岁时已吹得一手很好的笛子。十二岁时又
  • 王同春 (水利)王同春(1852年-1925年),字浚川,清末河北邢台人,中国近代史上河套地区黄河后套的主要开发者之一,富于传奇色彩的水利专家。他出生于破落地主家庭,从小一目失明,自学成才,一生勤奋过人,经