分裂四元数

✍ dations ◷ 2025-12-11 10:32:53 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 威尔金森杰弗里·威尔金森爵士(英语:Sir Geoffrey Wilkinson,1921年7月14日-1996年9月26日),英国化学家,皇家学会院士(Fellows of the Royal Society, FRS)。因对金属有机化合物的研究与德
  • 跳小蜂科见内文跳小蜂科(学名:Encyrtidae)是膜翅目细腰亚目寄生蜂下目昆虫之下的一个大科。作为寄生蜂下目的成员,本科物种的幼虫大多数均寄生在其他宿主,例如:它们的卵、若虫等。它们的宿
  • 地质年代学地质年代学(英语:Geochronology)是利用岩石本身固有的特征,确定岩石、化石和沉积物存在年代的科学。绝对地质年代学测定可通过测定放射性同位素进行,而相对地质年代学则可使用古
  • 英国地质调查局1835Nottingham NG12 5GG£52m英国地质调查局(英语:British Geological Survey,BGS)是一个部分由国家赞助的组织,旨在透过有系统性的测量、监测和研究,提升英国陆地及其大陆架的地
  • 灭虱草灭虱草(学名:)是毛茛科灭虱草属的模式种,曾经属于翠雀属。古希腊人把灭虱草叫做σταφὶς ἀγρία(),意思是“野葡萄干”。迪奥斯科里德斯描述其叶似野葡萄叶,但也有人认为这
  • 125街车站125街车站(英语:125th Street station)可以指:
  • A180公路 (俄罗斯)俄罗斯联邦公路(英语:Russian federal highways)A180联邦公路,又称纳尔瓦公路(На́рва),是俄罗斯的一条干线公路,连接圣彼得堡和伊万哥罗德,全长120公里。也是欧洲E22公路的一部
  • 太鲁阁小檗太鲁阁小檗(学名:)为小檗科小檗属下的一个种。
  • 德塞德塞(1654年-1670年),满洲爱新觉罗氏。郑献亲王济尔哈朗之孙、简纯亲王济度第三子。第三代郑亲王(1661年-1670年)。顺治十七年(1660年),父亲济度逝世,德塞于顺治十八年(1661年)承袭简亲王
  • 韩宁镐韩宁镐(德语:Bischof Augustin Henninghaus, S.V.D.,1862年9月11日-1939年7月20日)罗马天主教主教。1862年9月11日,韩宁镐生于德国门登,1879年加入圣言会,1885年成为神父,次年受杨生