分裂四元数

✍ dations ◷ 2024-12-23 11:06:47 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 语言接触语言接触(language contact)是一个语言学研究的现象,发生在不同的语言系统相互互动或影响之时。此种研究又称接触语言学(contact linguistics)。当不同语言的说话者密切的接触时,
  • 无水黄油无水黄油(英语:Clarified butter,德语:Butterschmalz),是从黄油中提炼出的液态牛奶脂肪。通常由普通黄油加热蒸发水分后,撇去漂浮物并摒弃沉淀物而得。无水黄油熔点比普通黄油熔点
  • 牵手牵手可以指:
  • 南鸟类南鸟类(学名:Australaves)是近年来才定义的鸟类演化支,由真隼形类(学名:Eufalconimorphae,包括:雀鸟、鹦鹉和隼),以及叫鹤目(学名:Cariamiformes,包括:叫鹤和已灭绝的骇鸟)组成。它们是非洲
  • 绀野真昼绀野真昼(日语:紺野まひる、1977年4月12日-,本名滨田里佳子),是日本大阪府丰中市出身的女演员,原宝冢歌剧团雪组主演娘役。血型A型,左撇子。从四岁开始学习古典芭蕾。1994年入学宝冢
  • 硼氢化钾硼氢化钾是一种无机化合物,用作还原剂。硼氢化钾可溶于甲醇、乙醇和液氨,不溶于乙醚、苯、四氢呋喃、甲醚和碳氢化合物。其溶解时在相应溶剂里的溶解度如下表:硼氢化钾在90K时
  • 杜鹃属近20个,见内文。杜鹃属() 是杜鹃科中的一属,在旧大陆中有不少物种,在南亚及东南亚尤为多样。一些来源也把淡色杜鹘()包含在属中,但对此分类有不少反对意见。
  • 芦洲神将芦洲神将是一种台湾新北市芦洲区发源的阵头艺术与雕刻技艺。神将,是台湾民间信仰,又称大神尪仔,往往在阵头中出现,芦洲神将包含数百个不同的神祇,是芦洲的文化遗产之一。芦洲神将
  • 宇垣缠宇垣缠(うがき まとめ)(日语:宇垣纏,1890年2月15日–1945年8月15日)是旧日本海军将领,太平洋战争爆发后任联合舰队参谋长。日本接受波茨坦公告后,宇垣缠带领最后一支特别攻击队出击
  • 皮耶罗·切卡里尼皮耶罗·切卡里尼(意大利语:Piero Ceccarini,1953年10月20日-)是一名已经退休的意大利足球裁判。切卡里尼在1989年开始执法意甲,并在1992年开始执法国际比赛。由于欧洲足联的认可,