分裂四元数

✍ dations ◷ 2025-06-08 03:01:42 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 群交群交(英语:group sex),是一种性行为的形式,由两个或以上的人类或动物同时参与到群体性交活动中。如古代原始社会中的乱婚习俗。群交可以发生在各种性别与性倾向的人类中。此外,由
  • 民生必需品民生必需品指满足人类基本生活需求的商品,其范围主要涉及衣、食、住、行。拥有或可以利用民生必需品,作为一个人的基本生存才可以得到保障。民生必需品可以分几类:
  • 波泰士陨石坑波泰士陨石坑是一个位于乌克兰基洛夫格勒州的陨石坑,直径24公里,以氩放射性定年法推测,形成的时间约在距今65.17 ± 0.64百万年前,与在墨西哥的希克苏鲁伯陨石坑相近,同为疑似造
  • 中士中士是军人的职衔,士官的一种,在大多数国家的军衔制度中,中士之下的阶级为下士,中士之上的阶级为上士。军队编制上多以士官长、上士担任副排长,中士担任班长,下士担任副班长,下辖三
  • Paragonimus bangkokensis曼谷狸殖吸虫(学名:Pagumogonimus bangkokensis)为并殖科狸殖属的动物,俗名曼谷并殖吸虫。分布于泰国以及中国大陆的海南等地,营寄生生活,终末宿主爪哇 、家猫、大白鼠、犬等以及
  • 蹴鞠蹴鞠(拼音:cù jū,中古拟音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gen
  • 阿迪·沙米尔阿迪·沙米尔(英语:Adi Shamir,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter A
  • 北部社区高中北部社区高中(英语:North Community High School)又称明尼阿波利斯北中(英语:Minneapolis North),是美国明尼苏达州明尼阿波利斯的一所四年制公立高级中学,有逾120年历史,主要建筑均
  • 弗雷德·韦斯特弗雷德·韦斯特(英语:Fred West,1941年9月29日-1995年1月1日)是一名英国连环杀手,于英国格罗斯郡犯下至少12起谋杀案件。至少有八件谋杀案是为满足韦斯特夫妇的性满足而犯下,手法有
  • 大岩刚大岩刚(1972年6月23日-),日本足球运动员,前日本国家足球队成员,现任鹿岛鹿角教练。2000年,他共为日本国家足球队出场3次。