分裂四元数

✍ dations ◷ 2025-11-22 06:40:39 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 牙周病学牙周病学是研究探讨牙齿支持组织(包括牙龈Gingiva、牙周韧带Periodontal ligament、齿槽骨Alveolar bone、牙骨质Cementum) 的病理变化及临床症状。
  • 同妻同妻即男同性恋者的妻子,女同性恋者的丈夫则称为同夫。其中大部分同妻/同夫是异性恋者,另有一部分是同性恋者,同妻/同夫通常指代前者。中国大陆绝大部分男同性恋者选择与异性结
  • 大专院校高等教育(法语:Études Supérieures;德语:Höhere Bildung;英语:Higher Education;西班牙语:Educación Superior),又称专上教育(英语:Post-secondary Education)是一个教育层级的概念,广
  • 艺术中心设计学院艺术中心设计学院(英语:ArtCenter College of Design,2015年后,校方正式将校名中Art与Center之间的空白去除),又简称为ArtCenter或ACCD,是一所非营利的私立艺术学院,座落于美国加州
  • 1-溴丙烷1-溴丙烷为无色或淡黄色透明液体,中性或微酸性,对光敏感,m.p.-110℃,b.p.71℃,相对密度1.357(20℃),n20D为1.4341,能以任意比例与醇、醚混合,微溶于水。1-溴丙烷作为一种有机合成原
  • GPEGPE(GPE掌上电脑环境, GPE Palmtop Environment)是一个计划为运行Linux操作系统的PDA等掌上设备提供自由图形用户界面的项目。GPE并不是一个单一的软件,但可以为运行Linux的掌上
  • 张先林张先林(1902年-1969年),安徽合肥人。美国纽约大学医学博士,先后在北平协和医学院服务九年医师职务,由住院医师以至外科总医师,教师职务由助教以至副教授。1939年起转任军职,除医疗工
  • 大鼻子情圣:恋爱操作团《大鼻子情圣:恋爱操作团》(韩语:시라노; 연애조작단,英语:),是一部2010年上映的韩国电影,由严泰雄、朴信惠、崔丹尼尔、朴哲民及李珉廷主演,根据法国埃德蒙·罗斯丹的舞台剧《风流剑
  • M(A)DE IN JAPAN (滨崎步专辑)《M(A)DE IN JAPAN》是日本歌手滨崎步的第17张原创专辑,于2016年6月29日在日本发行,也是滨崎步第一张未能卖出5万销量的原创专辑。本作是继前作《sixxxxxx》时隔近11个月,滨崎
  • 针笔针笔(英语:technical pen),也称针管笔,是一种制图工具,地图学家、建筑师、工程师、制图员或漫画家常用它来绘制地图、建筑图、工程图、技术图或漫画中固定宽度的线条。针笔使用可