分裂四元数

✍ dations ◷ 2025-12-08 06:35:09 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 牧场牧场(英语:Ranch)是具有饲养家畜设施,能够进行放牧的单位。不同于农场的是,牧场主要用于饲养哺乳型食草家畜,如牛、马、羊。
  • 软焊软钎焊、软焊(英语:soldering)是一种利用熔化熔点较低金属来连结其他金属工件的制造过程。被熔化的金属一般称为焊料,一般其熔点低于摄氏400度。软钎焊和硬钎焊的差异是在于焊料
  • 魔戒《指环王》(英语:The Lord of the Rings)是一部由英国牛津大学教授、语言学家J·R·R·托尔金创作的史诗奇幻文学作品。这个故事原是托尔金早年创作的儿童幻想小说《霍比特人》
  • 亚洲地区八纮一宇是大日本帝国第二次世界大战时期的国家格言,日本政府宣传部门的解释是天下一家、世界大同的意思,但在当时的氛围下,实质上是服务军方的侵略扩张政策,从军备、政治体制、
  • 卡斯商学院安妮公主殿下(伦敦大学)保罗·库伦教授伦敦卡斯商学院(Cass Business School),是英国商学院,官方称呼为伦敦大学城市约翰·卡斯爵士商学院(The Sir John Cass Business School, Ci
  • 凯莉·拉瑟福德凯莉·拉瑟福德(英语:Kelly Rutherford,1968年11月6日-),是一名美国女演员,原名:凯莉·黛恩·玫丽莎·拉瑟福德(Kelly Deane Melissa Rutherford)。拉瑟福德演出《Generations》中的St
  • 贝特霍尔德·劳费尔贝特霍尔德·劳费尔(德语:Berthold Laufer,1874年-1934年),生于德国科隆,移民美国,东方学家与汉学家。通晓汉语、日语、藏语。1901年-1904年,1908年- 1910年,1923年多次在中国进行长期
  • 亚历山大·阿希耶泽尔亚历山大·伊里奇·阿希耶泽尔(俄语:Алекса́ндр Ильи́ч Ахие́зер,1911年10月31日-2000年5月4日),苏联理论物理学家。他对物理学的许多分支做出了贡献,包括
  • 百丈漈百丈漈,位于浙江省温州市文成县的大瀑布。2004年,百丈漈及附近景区被列为国家重点风景名胜区,是国家4A级景区。百丈漈地处洞宫山脉,周围海拔800米的高山环绕。瀑布位于“V”形深
  • 阿迪苏吉普托国际机场阿迪苏吉普托国际机场(又称:日惹国际机场)(IATA代码:JOG,ICAO代码:WARJ),是一个位于印度尼西亚爪哇日惹市的对外航空交通机场。