分裂四元数

✍ dations ◷ 2025-11-19 02:11:57 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 湖南省儿童铅中毒案湖南省儿童铅中毒案发生于中国湖南省武冈市。因武冈市精炼锰加工厂污染导致数十名农村地区儿童血液中铅含量超标,居民中出现恐慌和愤怒情绪。舆论高度关注中国农村和边远地区
  • 安第斯山脉安第斯山脉(西班牙语:Cordillera de los Andes;奇楚亚语:Walla Antikuna),也称安弟斯山脉或安蒂斯山脉,是陆地上最长的山脉,位于南美洲的西岸,约7,000公里长,200至700公里宽(最宽的部分
  • 王义德墓艋舺王氏家族是一个发迹于台北万华地区的家族,其创始者为来自福建泉州惠安溪底的王义德。
  • 亚裔配额亚裔配额是种族配额(英语:Racial quota)的一种,自1980年起存在至今,反映了美国国内教育机构或职场中有意限制亚裔人数的现象。尽管以常春藤盟校为首的美国高等学府并不承认所谓的
  • 玛兹达克玛兹达克(波斯语:مزدک‎;中古波斯语:����;?-约524年或528年),波斯萨珊王朝改革家、宗教活动者,祆教僧侣。玛兹达克自称是祆教最高神阿胡拉·玛兹达派来的先知,宣扬平等,主张财产共有、建
  • 信号处理在计算机科学、药物分析、电子学等学科中,信号处理(英语:signal processing)是指对信号表示、变换、运算等进行处理的过程。信号处理可以用于沟通人类之间,或人与机器之间的联系;
  • CGI集团CGI集团(CGI Group Inc.) 是一家总部位于加拿大蒙特利尔的跨国公司,业务涉及IT咨询和外包服务及其相关产业。2012年以27亿加元的价格收购英国IT服务公司Logica,因此成为世界第五
  • 1993年世界博览会1993年世界博览会于1993年8月7日至1993年11月7日在韩国大田广域市召开。此次博览会是韩国继1988年汉城奥运会后的又一次世界性盛事。有108个国家和33个国际组织33个参加了大
  • 奶油伴水果奶油伴水果(英语:fool,老式拼法foole)是一种英式甜点,通常由混合泥状水果、生奶油、糖制作,有时候会加上玫瑰花水以增添风味。“foole”这个字,做为一个甜点,与乳脂松糕第一次被提到
  • 詹姆斯·范德比克詹姆斯·范德比克(英语:James David Van Der Beek,1977年3月8日-)是美国的一位演员。出生在康涅狄格州柴郡。他最著名的作品包括在WB电视剧《恋爱时代》中饰演Dawson Leery角色,也