分裂四元数

✍ dations ◷ 2025-08-25 03:08:35 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 咖啡替代品咖啡代用品是指非咖啡,但因为外观、口味类似咖啡,因此用来代替咖啡的产品,多半也不含咖啡因。咖啡代用品的使用可能是因为医药上、经济上或是信仰上的原因,也有可能只是因为无法
  • 铁离子三价铁离子(Fe3+)是一种常见的铁的离子,主要存在于铁盐及其溶液中,如氯化铁。Fe3+具有较强的氧化性(EΘ=+0.77V)。虽然常见的含三价铁离子的氯化铁溶液呈棕黄色,但这并不是Fe3+自
  • 洋鬼子洋鬼子、鬼子是由清末起国人对欧美、日本人等外国人的贬称。“鬼子”一词始见于《世说新语·方正》:“卢志于众坐问陆士衡(陆机):‘陆逊、陆抗,是君何物?’……士衡正色曰:‘我父祖
  • 雨果·克劳斯雨果·莫里斯·朱利安·克劳斯(Hugo Maurice Julien Claus,荷兰语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida
  • 编号航空队编号航空队(NAF),或称航空队,是美国空军的一种建制,在美国空军标准层级定义上,低于一级司令部,高于联队,与中心平级。一般隶属于与一级司令部,可辖有若干联队、大队、中队。在空军的
  • 壳丘头遗址壳丘头遗址,是位于中国福建省平潭县平原镇南垄村东的古遗址,其历史年代为新石器时代至商朝,现为第八批全国重点文物保护单位的167处古遗址之一。壳丘头遗址在1991年4月17日获公
  • 美丽诺绵羊美丽诺绵羊(Merino),一种优秀的绵羊品种,是细毛羊的主要品种。以澳大利亚的最为著名,由英国军官约翰·麦克阿瑟(英语:John Macarthur (wool pioneer))引进,但初次培育并不在澳大利亚,
  • 北京市第一五九中学北京第一五九中学,简称北京一五九中,中学原名北平市第三女子中学,是一所具有七十多年历史的完全中学。北京市第一五九中学于2003年1月搬出历代帝王庙,搬入在其西边不远的北京金
  • 安徽美术出版社安徽美术出版社是一家成立于1984年10月的美术出版社,由安徽人民出版社美术编辑部扩建,隶属于时代出版传媒股份有限公司(原安徽出版集团)。ISBN代码为978-7-5398。2009年被新闻出
  • 龙门山镇龙门山镇,是中华人民共和国四川省成都市彭州市下辖的一个乡镇级行政单位。2019年12月,撤销小鱼洞镇,将其所属行政区域划归龙门山镇管辖,龙门山镇人民政府驻复兴路331号。龙门山