分裂四元数

✍ dations ◷ 2025-04-12 07:58:27 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 血压血压是指血管内的血液在单位面积上的侧压力,即压强。习惯以毫米汞柱(mmHg)为单位。而动脉血压则指的是血液对动脉血管的压力,一般指主动脉压。而平均血压则是 = (收缩压+ 2 x 舒
  • 病理人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学病理学(pathology)是医学领域的一门分支
  • 里海里海(阿塞拜疆语:Xəzər dənizi,波斯语:دریای مازندران/دریای خزر‎,俄语:Каспийское море,哈萨克语:Каспий теңізі,土库曼语:Haza
  • 国家实验室美国能源部国家实验室与技术中心是指在美国能源部监管之下的一系列研究设施和实验室系统,目的是促进科学的研究和技术的进步,进而推动完成美国能源部的使命。截至2017年,美国能
  • 微小扇头蜱Boophilus microplus微小扇头蜱(Rhipicephalus microplus)为硬蜱科扇头蜱属下的一个种,在经济上地位重要,因为它会寄生在多个家畜的物种的身上,例如:牛只、水牛、马、驴、山羊、鹿
  • 尼古丁 §成瘾尼古丁(英语:Nicotine),俗称烟碱,是一种发现于茄科植物的强效拟副交感神经生物碱,是香烟的主要化学成分和主要致瘾成分,属于兴奋剂的一种。尼古丁是一种烟碱型乙酰胆碱受体(英语:Nico
  • 日本民族问题日本民族问题(日语:日本の民族問題/にほんのみんぞくもんだい),指与日本的民族政策和种族歧视等相关的问题。在蒙古人种占大多数的日本,特别是相邻诸国中抱有种族渊源观念的人群,以
  • 国立海洋科技博物馆国立海洋科技博物馆(简称海科馆、海博馆)是位于台湾基隆市中正区的海洋科技博物馆,馆区依山傍海,西邻八斗子市街与八斗子渔港、东接东北角海岸风景特定区,有省道台2线(滨海公路)及
  • 周晓鸥周晓鸥(1969年8月22日-),北京人,中华人民共和国歌手、原零点乐队主唱。周晓鸥早年带领零点乐队进行比赛,1998年,带领乐队蝉联上海东方电台第四届东方风云榜“最受欢迎乐队组合”大
  • 陈韦利陈韦利(1988年3月4日-),艺名韦利,毕业于华冈艺校,现就读于国立台湾戏曲学院京剧科。为伊林模特儿经纪公司旗下模特儿,曾参加《我爱黑涩会》成为其中美眉。由于外型成熟性感,与伊林的