分裂四元数

✍ dations ◷ 2025-10-16 18:18:16 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 地舌菌纲地舌菌纲(学名:Geoglossomycetes)是子囊菌门盘菌亚门的一个纲,为一个单型的分类元,其下只有地舌菌目(Geoglossales)一个单型目,而地舌菌目亦只有地舌菌科(Geoglossaceae)一个科。地舌
  • 威廉·S·蒂利特威廉·S·蒂利特(英语:William Smith Tillett,1892年7月10日-1974年4月4日),美国内科医师和微生物学家,纽约大学医学院(英语:New York University School of Medicine)教授,出生于北卡
  • 发明发明是一种独特的、创新的有形或无形物,或是指其开发的过程。可以是指对机械、装置、产品、概念、制度的创新或改进。一个社会经常问的问题是:“什么情况导致发明的产生?”基本
  • 桥头事件桥头事件,为发生于民国68(1979)年1月22日于台湾省高雄县桥头乡(现在的高雄市桥头区)的示威游行活动,为国民政府在台湾实施戒严三十年以来第一次的政治示威活动。民国67年(1978年)8月
  • 西摩岛坐标:64°14′S 56°37′W / 64.233°S 56.617°W / -64.233; -56.617西摩岛(英语:Seymour Island)是南极洲的岛屿,位于南极半岛西北面的威德尔海,长19.2公里、宽8.8公里,面积100平
  • 眼动追踪眼动追踪,(英语:Eye Tracking),是指通过测量眼睛的注视点的位置或者眼球相对头部的运动而实现对眼球运动的追踪。眼动仪是一种能够跟踪测量眼球位置及眼球运动信息的一种设备,在视
  • 文森特·梅西文森特·梅西(Vincent Massey)(1887年-1967年),加拿大律师、外交官。生于安大略,1952年获佐治六世任命为加拿大总督至1959年卸任,是为第一位出生于加拿大本土的加拿大总督。文森特·
  • 坚齿螺科坚齿螺科(学名:Camaenidae),又名南亚蜗牛科,是旋蜗牛总科(Helicoidea)之下的一个科,全为陆生会呼吸空气的有肺类腹足纲软体动物。一般常见的蜗牛大都属于本科,而本科亦是柄眼类支序中
  • 养小鬼养小鬼又称养鬼仔,指收养夭折婴儿或早逝的小孩的灵魂并供养的行为。
  • 安德烈亚斯·塞拉里乌斯安德烈亚斯·塞拉里乌斯(拉丁语:Andreas Cellarius,约1596年-1665年)是一位生于德国的荷兰地图学家,最有名的作品是星图《和谐大宇宙》(Harmonia Macrocosmica),该星图由约翰内斯·扬