分裂四元数

✍ dations ◷ 2025-11-06 05:20:33 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 冲突冲突,是指两个个体的需求、价值观念和利益引致实际或想像的反对表现。冲突可以是内部(自己内心)或外部(两个或以上的个人或团体)的。尽管所有的文化都注重和平,和平是普世价值之一
  • 搅拌机搅拌机(英语:Mixer)或称搅拌器,是一种透过齿轮装置运作的厨房用具,在要准备的食物碗中准备一组搅拌机,它可以自动化搅拌、敲打和跳动。
  • 重农抑商重农主义(英语:Physiocracy,其希腊字源为Physio(自然)-cracy(治理),也称作重农学派)的经济理论认为,国家财富的根本来源为土地生产及土地发展,偏重以农业劳动为主的自然秩序的概念。该
  • 安乐死教会安乐死教会(Church of Euthanasia)是由克里斯·科达在美国马萨诸塞州地区波士顿创设之政治组织。根据教会的网站,它是一个非营利性的教育机构,致力于恢复地球上的人类和其余物种
  • 瓦尔韦德瓦尔弗德(英语:Val Verde)是位于美国加利福尼亚州洛杉矶县的一个人口普查指定地区。瓦尔弗德的座标为34°26′43″N 118°39′26″W / 34.44528°N 118.65722°W / 34.44528; -
  • 井上良馨井上良馨(平假名:いのうえ よしか、弘化2年旧暦11月3日(1845年12月1日) - 昭和4年(1929年)3月22日),日本德川幕府末期~明治时代的军人。官至元帅海军大将、从一位、大勋位、功二级、
  • 东汲河东汲河,位于安徽省六安市裕安区西部,是淮河中游右岸支流汲河的东源,发源于裕安区西南部石婆店镇东部,北流至固镇镇与主源西汲河汇流。全长82公里,流域面积469平方公里。
  • 翩翩《翩翩》是蒲松龄的小说《聊斋志异·卷三》中的一个故事。翩翩是故事中的女主人公,一个仙女。故事中的男主角陕西彬县人罗子浮是一位官宦子弟。14岁时就开始嫖娼,并且和妓女去
  • 拉玛克里斯纳拉玛克里斯纳,或译罗摩奎师那、罗摩克里希那(本篇均简称拉玛,孟加拉语: রামকৃষ্ণ পরমহংস, 帮助·信息,1836年2月18日-1886年8月16日),原名Gadadhar Chatterji或Gadadh
  • 大金龙大金龙是多间公司的相似名称,可指: