分裂四元数

✍ dations ◷ 2025-12-03 13:11:33 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 喉返神经喉返神经(Recurrent Laryngeal Nerve)是人体第十对脑神经中,迷走神经(Vagus Nerve)的分支,脑神经出现在所有的脊椎动物上,因此在其他种类的脊椎动物身上也具有喉返神经。控制喉部(la
  • 海洋生态系统海洋生态系统是地球水域生态系统(英语:Aquatic ecosystem)中最大的一个部分,海面占据着地球上三分之二的面积,包括海洋、盐沼、潮间带、河口、潟湖、红树林等等,这些地点支持着众
  • 雷·查尔斯雷·查尔斯(英语:Ray Charles,1930年9月23日-2004年6月10日),本名雷·查尔斯·鲁滨逊(Ray Charles Robinson),美国灵魂音乐家、钢琴演奏家,是节奏布鲁斯音乐的先驱。他是第一批被列入
  • 田鸡腿田鸡腿,又称青蛙腿,中国南方地区的人称为田鸡腿。是一道以蛙类为主的菜,这是一道很常见的法国和中国菜,在世界上的其它地方像加勒比海地区、波兰、美国的部分地区,人们也食用它。
  • 宁根福宁根福(1950年-),中国杂技表演艺术家,一级演员,中国杂技家协会原副主席、顾问,广州军区战士杂技团团长,第十届全国政协委员。
  • 不送气齿龈搭嘴音不送气齿龈搭嘴音(Tenuis alveolar click)或不送气龈后搭嘴音(Tenuis postalveolar click)是一种辅音,主要出现于南非的一些口语中。其中,术语“不送气”(tenuis)又称“无声爆破音”
  • 顾梅圣上海交大医学院(原上海第二医科大学)法语培训中心创始人。1987-1996担任中心主任、曾兼任二医大外语系主任。1990年获法国学术棕榈勋位团二级勋章。
  • 博因宫博因宫(爱尔兰语:Brú na Bóinne,通常被错误地译为“博因河曲”)是多个考古地点的集合,包括多处重要的史前坟墓,位于爱尔兰共和国首都都柏林北50公里处。主要有三座坟墓:纽格莱奇
  • 冈大海冈大海(日语:おか ひろみ,1991年7月15日-)冈山县仓敷市出身的职业棒球选手(外野手)。右投右打。目前为太平洋联盟千叶罗德海洋队球员。72 的场直树 | 71 吉井理人 | 80 大冢明 | 8
  • 弹著点弹着点(point of impact,简称POI),是指抛射物在外弹道飞行末端撞击到物体时的位置。(PS:此处的抛射物范围较宽泛,包括并不限于子弹、炮弹、航空炸弹、火箭弹和导弹的弹头等一切现代