分裂四元数

✍ dations ◷ 2025-07-06 15:03:21 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • O-16氧-16,为氧的一个稳定同位素,拥有8个质子和8个中子,在氧化态为0时有8个电子,氧-16的丰度约为99.76%,约占地壳含量的48.5%。氧-16,可于约摄氏两亿度的3氦过程后形成碳-12后再撞击一
  • 促卵泡激素促卵泡激素(英语:follicle-stimulating hormone, FSH,亦称为卵泡刺激素)是一种由脑垂体合成并分泌的激素,属于糖基化蛋白质激素,因最早发现其对女性卵泡成熟的刺激作用而得名。后
  • 惠更斯原理惠更斯-菲涅耳原理(英语:Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷兰物理学者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。这个原理同时适
  • 多面形在几何学中,多面形(英语:Hosohedron)是一种由月牙形或球弓形组成的球面镶嵌,并且使得每一个月牙形或球弓形共用相同的两个顶点。其在施莱夫利符号中用 {2, n} 表示n面形。其亦可
  • 坦普尔坦普尔(Temple)是位于美国德克萨斯州贝尔县的一个城市,靠近县治贝尔顿 。它最早是一个铁路镇,成立于1881年,2010年美国人口普查时有66,102人。‡该聚居地有部分位在邻近一个或以
  • 侏獴属侏獴属,也叫矮獴属,包括侏獴。
  • 萼菊石萼菊石(学名:)是生存在白垩纪海洋中的一属菊石,由于其粗壮的肋条和圆胖的壳形,萼菊石和其近亲可能不擅长于水平游动,而较擅长垂直地在深浅海域之间往返迁移,其粗大的体管或许有助于
  • 中冢胜久中冢胜久,日本男性配音员。艺名中まさる。现为自由身。为人熟悉的代表配音作品是SNK电玩格斗游戏《龙虎之拳》系列的头目、在《格斗天王》系列担任配音的Mr.比克、《风云黙示
  • 银楼银楼为一种珠宝店,常见于华人文化区的通俗称呼,银楼不同于百货公司专柜的品牌珠宝专柜(如:卡地亚、蒂芬妮)而是单独开设于社区的个人经营型态,贩售的珠宝为自制或是家庭工厂、中小
  • 羽田正羽田 正(1953年7月9日-) 是一名日本历史学家。现任东京大学东洋文化研究所教授,専门は研究伊斯兰建筑史、近世伊斯兰史。1953年7月出生于大阪市的一个学术世家,是羽田明的儿子、