狭义相对论中的加速度

✍ dations ◷ 2025-08-16 08:52:37 #加速度,狭义相对论

狭义相对论中的加速度类似于牛顿力学中的概念,乃速度对于时间的微分。因为相对论中的洛伦兹转换及时间膨胀,时间与距离的概念变为复杂,因此“加速度”的定义也变得复杂。狭义相对论为平直闵可夫斯基时空的理论,即使加速度存在依然有效,前提是能量动量张量所造成的重力场效应可以忽略。否则,则需用到广义相对论以及弯曲时空来诠释。在地球表面附近,时空弯曲程度不明显,因此实务上采用狭义相对论来诠释物理现象仍是合宜作法,比如粒子加速器实验。

如同在外界惯性坐标系中的测量,三维空间中的普通加速度(称为“三维加速度”或“坐标加速度”)的转换式可以推导得出。此外作为一特例,也可用共动(comoving)的加速规来测量固有加速度。另一种有用的形式是四维加速度,其分量可透过洛伦兹转换在不同参考系中做连结。连结加速度与力的运动方程也可得到。几种特殊形式的加速物体运动方程以及它们的弯曲世界线可以透过对上述方程的积分求得。知名的特例如双曲运动(英语:hyperbolic motion (relativity)),适用于常数值纵向固有加速度的例子,以及等速率圆周运动。最后,在狭义相对论的架构下,描述加速参考系中的物理现象亦为可行。

历史演进上,在相对论发展的早年即已出现包含加速度的相对论性方程,在早年的教科书中有整理,如马克斯·冯·劳厄(1911年、1921年)或沃夫冈·泡利(1921年)。举例来说,运动方程以及加速度转换式于以下学者的论文中建立起来:亨德里克·洛伦兹(1899年、1904年)、儒勒·昂利·庞加莱(1905年)、阿尔伯特·爱因斯坦(1905年)、马克斯·普朗克(1906年);四维加速度、固有加速度与双曲运动的分析参见赫尔曼·闵可夫斯基 (1908年)、马克斯·玻恩(1909年)、古斯塔夫·赫格洛茨(英语:Gustav Herglotz)(1909年)、阿诺·索末菲(1910年)、冯·劳厄(1911年)。

在牛顿力学与狭义相对论中,三维加速度或坐标加速度的定义保持一致。 a = ( a x ,   a y ,   a z ) {\displaystyle \mathbf {a} =\left(a_{x},\ a_{y},\ a_{z}\right)} 是速度 u = ( u x ,   u y ,   u z ) {\displaystyle \mathbf {u} =\left(u_{x},\ u_{y},\ u_{z}\right)} 对坐标时间的一阶导数,亦即是位置 r = ( x ,   y ,   z ) {\displaystyle \mathbf {r} =\left(x,\ y,\ z\right)} 对坐标时间的二阶导数:

然而在另一相异的惯性参考系中做三维加速度测量时,两项理论的预测就出现重大歧异。牛顿力学中,时间是绝对的( t = t {\displaystyle t'=t} ),采用的惯性系转换式为伽利略转换。因此,从伽利略转换推导而得的三维加速度在所有惯性系中皆相同:

相反地,在狭义相对论中, r {\displaystyle \mathbf {r} } t {\displaystyle t} 两者皆与洛伦兹转换相依,因此三维加速度 a {\displaystyle \mathbf {a} } 及其分量在不同惯性系也各不相同。当惯性系间的相对速度是沿着x轴,即 v = v x {\displaystyle v=v_{x}} γ v = 1 / 1 v 2 / c 2 {\displaystyle \gamma _{v}=1/{\sqrt {1-v^{2}/c^{2}}}} 为相对应的洛伦兹因子),洛伦兹转换式为:

x = γ v ( x v t ) y = y z = z t = γ v ( t v c 2 x ) x = γ v ( x + v t ) y = y z = z t = γ v ( t + v c 2 x ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}x'&=\gamma _{v}(x-vt)\\y'&=y\\z'&=z\\t^{\prime }&=\gamma _{v}\left(t-{\frac {v}{c^{2}}}x\right)\end{aligned}}&{\begin{aligned}x&=\gamma _{v}(x'+vt')\\y&=y'\\z&=z'\\t&=\gamma _{v}\left(t'+{\frac {v}{c^{2}}}x'\right)\end{aligned}}\end{array}}}

 

 

 

 

(1a)

或是对于一长度 v {\displaystyle v} 及任意方向的速度矢量 v = ( v x ,   v y ,   v z ) {\displaystyle \mathbf {v} =\left(v_{x},\ v_{y},\ v_{z}\right)} (其中 | v | = v = v x 2 + v y 2 + v z 2 {\displaystyle |\mathbf {v} |=v={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}} ),洛伦兹转换式为:

r = r + v t = γ v ( t r v c 2 ) r = r + v t = γ v ( t + r v c 2 ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} '&=\mathbf {r} +\mathbf {v} \left\\t^{\prime }&=\gamma _{v}\left(t-{\frac {\mathbf {r\cdot v} }{c^{2}}}\right)\end{aligned}}&{\begin{aligned}\mathbf {r} &=\mathbf {r} '+\mathbf {v} \left\\t&=\gamma _{v}\left(t'+{\frac {\mathbf {r'\cdot v} }{c^{2}}}\right)\end{aligned}}\end{array}}}

 

 

 

 

(1b)

为了求得三维加速度的转换式,必须分别对洛伦兹转换式中的空间坐标 r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} '} 做时间 t {\displaystyle t} t {\displaystyle t'} 的微分。首先是得到三维速度 u {\displaystyle \mathbf {u} } u {\displaystyle \mathbf {u} '} 的转换式(亦称为速度加成式);尔后再次做时间 t {\displaystyle t} t {\displaystyle t'} 的微分运算而得到三维加速度 a {\displaystyle \mathbf {a} } a {\displaystyle \mathbf {a} '} 的转换式。从式(1a)出发,所得到的转换式为平行(x方向)与垂直(y、z方向)于速度 v = v x {\displaystyle v=v_{x}} 之加速度:

a x = a x γ v 3 ( 1 u x v c 2 ) 3 a y = a y γ v 2 ( 1 u x v c 2 ) 2 + a x u y v c 2 γ v 2 ( 1 u x v c 2 ) 3 a z = a z γ v 2 ( 1 u x v c 2 ) 2 + a x u z v c 2 γ v 2 ( 1 u x v c 2 ) 3 a x = a x γ v 3 ( 1 + u x v c 2 ) 3 a y = a y γ v 2 ( 1 + u x v c 2 ) 2

相关

  • 酱油蟹酱油蟹(韩语:게장),韩国五大名菜之一,将未经烹调的生蟹放在酱油中腌制而成,当地民众喜爱直接将白饭加进蟹盖内与蟹黄一起伴吃,故这道菜色又名“偷饭贼”。朝鲜传统医学认为螃蟹性寒
  • 雍正雍正(满语:ᡥᡡᠸᠠᠯᡳᠶᠠᠰᡠᠨ ᡨᠣᠪ,穆麟德:hūwaliyasun tob,太清:hvwaliyasun tob,大词典:huuwaliyasun tob;蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang
  • 大卫·格罗斯戴维·格娄斯(英语:David Jonathan Gross,1941年2月19日-),美国理论物理学家,凯维里理论物理研究所教授。他受业于伯克利加州大学的杰弗里·丘教授。在任教于普林斯顿大学期间,他和
  • Mg(NOsub3/sub)sub2/sub硝酸镁是镁元素的硝酸盐,具有吸湿性,在潮湿的空气中能快速与水反应形成六水合硝酸镁。硝酸镁易溶于水或乙醇。水溶液呈弱酸性。硝酸镁的主要用途是浓缩硝酸,并常被用于印刷业及
  • 瑰玛·甘甘妮圣瑰玛·甘甘妮(意大利语:Maria Gemma Umberta Pia Galgani,1878年3月12日-1903年4月11日)是一名意大利女神秘家,自1940年起被罗马天主教会尊奉为圣人。她被称为“基督受难的女儿
  • 恰恰 (白兰地)恰恰(格鲁吉亚语:ჭაჭა)是乔治亚的一种白兰地。恰恰酒色透明,度数较高,有时会使用未成熟的葡萄或野生的葡萄制作。有些恰恰使用无花果或瓯柑、橙子、桑果等其他水果或香草制作
  • 瑞典学院瑞典学院(瑞典语:Svenska Akademien)由瑞典国王古斯塔夫三世于1786年创立,是瑞典皇家学院之一。瑞典学院参照法兰西学术院模式,共设有18名终身院士,有人去世才能补缺(2018年瑞典学
  • 2014年马来西亚羽毛球黄金大奖赛2014年马来西亚羽毛球黄金大奖赛为第6届马来西亚羽毛球黄金大奖赛,是2014年世界羽联大奖赛的其中一站。本届赛事于2014年3月25日至3月30日在马来西亚柔佛州的首府新山举行,并
  • 蓝屏死机蓝屏死机(英语:Blue Screen of Death,缩写为:BSoD)指的是微软Windows操作系统在无法从一个系统错误中恢复过来时所显示的屏幕图像。当Windows 9x出现BSOD错误时,通常会显示两次BSO
  • 李永丰李永丰(1962年3月3日-),嘉义县布袋镇人,外号李美国,台湾剧场演员、编剧、导演。毕业于国立艺术学院戏剧系以及国立台北艺术大学传统艺术研究所文化资产与文化政策组。 1992年成立