狭义相对论中的加速度

✍ dations ◷ 2025-09-08 05:59:31 #加速度,狭义相对论

狭义相对论中的加速度类似于牛顿力学中的概念,乃速度对于时间的微分。因为相对论中的洛伦兹转换及时间膨胀,时间与距离的概念变为复杂,因此“加速度”的定义也变得复杂。狭义相对论为平直闵可夫斯基时空的理论,即使加速度存在依然有效,前提是能量动量张量所造成的重力场效应可以忽略。否则,则需用到广义相对论以及弯曲时空来诠释。在地球表面附近,时空弯曲程度不明显,因此实务上采用狭义相对论来诠释物理现象仍是合宜作法,比如粒子加速器实验。

如同在外界惯性坐标系中的测量,三维空间中的普通加速度(称为“三维加速度”或“坐标加速度”)的转换式可以推导得出。此外作为一特例,也可用共动(comoving)的加速规来测量固有加速度。另一种有用的形式是四维加速度,其分量可透过洛伦兹转换在不同参考系中做连结。连结加速度与力的运动方程也可得到。几种特殊形式的加速物体运动方程以及它们的弯曲世界线可以透过对上述方程的积分求得。知名的特例如双曲运动(英语:hyperbolic motion (relativity)),适用于常数值纵向固有加速度的例子,以及等速率圆周运动。最后,在狭义相对论的架构下,描述加速参考系中的物理现象亦为可行。

历史演进上,在相对论发展的早年即已出现包含加速度的相对论性方程,在早年的教科书中有整理,如马克斯·冯·劳厄(1911年、1921年)或沃夫冈·泡利(1921年)。举例来说,运动方程以及加速度转换式于以下学者的论文中建立起来:亨德里克·洛伦兹(1899年、1904年)、儒勒·昂利·庞加莱(1905年)、阿尔伯特·爱因斯坦(1905年)、马克斯·普朗克(1906年);四维加速度、固有加速度与双曲运动的分析参见赫尔曼·闵可夫斯基 (1908年)、马克斯·玻恩(1909年)、古斯塔夫·赫格洛茨(英语:Gustav Herglotz)(1909年)、阿诺·索末菲(1910年)、冯·劳厄(1911年)。

在牛顿力学与狭义相对论中,三维加速度或坐标加速度的定义保持一致。 a = ( a x ,   a y ,   a z ) {\displaystyle \mathbf {a} =\left(a_{x},\ a_{y},\ a_{z}\right)} 是速度 u = ( u x ,   u y ,   u z ) {\displaystyle \mathbf {u} =\left(u_{x},\ u_{y},\ u_{z}\right)} 对坐标时间的一阶导数,亦即是位置 r = ( x ,   y ,   z ) {\displaystyle \mathbf {r} =\left(x,\ y,\ z\right)} 对坐标时间的二阶导数:

然而在另一相异的惯性参考系中做三维加速度测量时,两项理论的预测就出现重大歧异。牛顿力学中,时间是绝对的( t = t {\displaystyle t'=t} ),采用的惯性系转换式为伽利略转换。因此,从伽利略转换推导而得的三维加速度在所有惯性系中皆相同:

相反地,在狭义相对论中, r {\displaystyle \mathbf {r} } t {\displaystyle t} 两者皆与洛伦兹转换相依,因此三维加速度 a {\displaystyle \mathbf {a} } 及其分量在不同惯性系也各不相同。当惯性系间的相对速度是沿着x轴,即 v = v x {\displaystyle v=v_{x}} γ v = 1 / 1 v 2 / c 2 {\displaystyle \gamma _{v}=1/{\sqrt {1-v^{2}/c^{2}}}} 为相对应的洛伦兹因子),洛伦兹转换式为:

x = γ v ( x v t ) y = y z = z t = γ v ( t v c 2 x ) x = γ v ( x + v t ) y = y z = z t = γ v ( t + v c 2 x ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}x'&=\gamma _{v}(x-vt)\\y'&=y\\z'&=z\\t^{\prime }&=\gamma _{v}\left(t-{\frac {v}{c^{2}}}x\right)\end{aligned}}&{\begin{aligned}x&=\gamma _{v}(x'+vt')\\y&=y'\\z&=z'\\t&=\gamma _{v}\left(t'+{\frac {v}{c^{2}}}x'\right)\end{aligned}}\end{array}}}

 

 

 

 

(1a)

或是对于一长度 v {\displaystyle v} 及任意方向的速度矢量 v = ( v x ,   v y ,   v z ) {\displaystyle \mathbf {v} =\left(v_{x},\ v_{y},\ v_{z}\right)} (其中 | v | = v = v x 2 + v y 2 + v z 2 {\displaystyle |\mathbf {v} |=v={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}} ),洛伦兹转换式为:

r = r + v t = γ v ( t r v c 2 ) r = r + v t = γ v ( t + r v c 2 ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} '&=\mathbf {r} +\mathbf {v} \left\\t^{\prime }&=\gamma _{v}\left(t-{\frac {\mathbf {r\cdot v} }{c^{2}}}\right)\end{aligned}}&{\begin{aligned}\mathbf {r} &=\mathbf {r} '+\mathbf {v} \left\\t&=\gamma _{v}\left(t'+{\frac {\mathbf {r'\cdot v} }{c^{2}}}\right)\end{aligned}}\end{array}}}

 

 

 

 

(1b)

为了求得三维加速度的转换式,必须分别对洛伦兹转换式中的空间坐标 r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} '} 做时间 t {\displaystyle t} t {\displaystyle t'} 的微分。首先是得到三维速度 u {\displaystyle \mathbf {u} } u {\displaystyle \mathbf {u} '} 的转换式(亦称为速度加成式);尔后再次做时间 t {\displaystyle t} t {\displaystyle t'} 的微分运算而得到三维加速度 a {\displaystyle \mathbf {a} } a {\displaystyle \mathbf {a} '} 的转换式。从式(1a)出发,所得到的转换式为平行(x方向)与垂直(y、z方向)于速度 v = v x {\displaystyle v=v_{x}} 之加速度:

a x = a x γ v 3 ( 1 u x v c 2 ) 3 a y = a y γ v 2 ( 1 u x v c 2 ) 2 + a x u y v c 2 γ v 2 ( 1 u x v c 2 ) 3 a z = a z γ v 2 ( 1 u x v c 2 ) 2 + a x u z v c 2 γ v 2 ( 1 u x v c 2 ) 3 a x = a x γ v 3 ( 1 + u x v c 2 ) 3 a y = a y γ v 2 ( 1 + u x v c 2 ) 2

相关

  • 火龙卷火龙卷,又称为火焰龙卷风、火焰漩涡、火灾旋风等,是当空气中的漩涡乱流因为高热及风向造成的湍流结合而形成,在旋风内有火焰。当这些涡旋空气继续收紧至类似龙卷风的结构时,可以
  • 卡尔文循环卡尔文循环(英语:Calvin cycle,或简称卡氏循环,又译作开尔文循环)是由美国加州大学伯克利分校梅尔文·卡尔文、安德鲁·本森和詹姆士·巴沙姆 3 人发现。梅尔文·卡尔文于1961年
  • 莫泽夫人迈-布里特·莫泽(挪威语:May-Britt Moser,1963年1月4日-),挪威心理学家、神经科学家,挪威科技大学卡夫利系统神经科学研究所和记忆生物学中心(英语:Kavli Institute for Systems Neur
  • 刘裕宋武帝刘裕(363年4月16日-422年6月26日),字德舆,小字寄奴,彭城绥舆里(今江苏省徐州市铜山区)人,东晋末年至南北朝初期的军事家、政治家,南北朝时期刘宋的开国皇帝。早年出身十分贫寒,刘
  • 冗余首字母缩写症候群症候群冗余首字母缩写综合征综合征(英语:RAS syndrome)或RAS综合征(日语:RAS症候群),或冗余缩写短语(英语:RAP phrases),是指多个词语的首字母合成一个短语,但是某个词或某几个词被重复的现象
  • 伞形目伞形目(学名:Apiales)又名伞形花目,是被子植物门双子叶植物纲下的一个目。下面包含五加科、伞形花科两个比较大的科别,这两个科别的植物有很多著名的药材,例如五加科中有人参属与
  • 鄂布斯·勇林鄂布斯·勇林,又名鄂布斯、鄂勇林。中国达斡尔族男演员,主要电视剧作品有《天龙八部》(饰耶律洪基)、《朱元璋》(饰徐达)以及《东方有大海》(饰明治天皇);主要电影作品有一八九四·甲
  • 瓦莱丽·索拉纳斯瓦莱丽·让·索拉纳斯(英语:Valerie Jean Solanas,1936年4月9日-1988年4月25日)是一位美国激进女性主义作家,曾经试图暗杀艺术家安迪·沃霍尔。1936年索拉纳斯出生于新泽西州,十几
  • 锺利俗钟利俗,隋末岷山羌人。617年四月初三,薛举和他的儿子薛仁果胁迫金城县令郝瑗发兵反隋,自称西秦霸王,改年号秦兴。他封薛仁果为齐公,幼子薛仁越为晋公。宗罗睺率部众归附,被封为义
  • 高桥伊望第二次世界大战(太平洋战争)高桥伊望中将(1888年4月20日-1947年3月18日),大日本帝国海军将官。第二次世界大战期间曾参与兰印作战、菲律宾战役,其后亦主要驻守东南亚地区。1942年,高