原时

✍ dations ◷ 2025-07-17 03:45:01 #原时
原时(英语:proper time),或称固有时间,是在相对论中与事件位在同处的时钟所测量的唯一时间,他不仅取决于事件,时钟也在事件的行动之中。对同一个事件,一个加速中的时钟所测得的原时会比在非加速(惯性)中时钟的原时为短。双生子佯谬就是其中的一个例子。在四维时空中,原时类似在三维空间(欧几里得空间)的弧长。在习惯上,原时通常使用希腊字母 τ {displaystyle tau } 来标示,以与协调时 t {displaystyle t} 有所区别。相对的,协调时(英语:Coordinate time)(英语:coordinate time)能由一个与事件有一段距离的观测者来应用。在狭义相对论中,协调时总是由在惯性系统内有关联的观测者计算,而原时则由同在加速中的观测者测量。原时的定义中,包含路径在时空中的描述,和那个时空的度量结构,这个路径可以代表时钟、观测者或粒子。在狭义相对论,原时的定义如下:τ = ∫ 1 − v ( t ) 2 c 2 d t = ∫ 1 − 1 c 2 ( ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 ) d t {displaystyle tau =int {sqrt {1-{frac {v(t)^{2}}{c^{2}}}}}dt=int {sqrt {1-{frac {1}{c^{2}}}left(left({frac {dx}{dt}}right)^{2}+left({frac {dy}{dt}}right)^{2}+left({frac {dz}{dt}}right)^{2}right)}}dt} ,此处, v ( t ) {displaystyle v(t)} 是在协调时 t {displaystyle t} 的座标速度, x {displaystyle x} 、 y {displaystyle y} 和 z {displaystyle z} 是空间中的正交座标。如果 t {displaystyle t} 、 x {displaystyle x} 、 y {displaystyle y} 和 z {displaystyle z} 都用一个参量 λ {displaystyle lambda } 的参数,公式可以简化为:τ = ∫ ( d t d λ ) 2 − 1 c 2 ( ( d x d λ ) 2 + ( d y d λ ) 2 + ( d z d λ ) 2 ) d λ {displaystyle tau =int {sqrt {left({frac {dt}{dlambda }}right)^{2}-{frac {1}{c^{2}}}left(left({frac {dx}{dlambda }}right)^{2}+left({frac {dy}{dlambda }}right)^{2}+left({frac {dz}{dlambda }}right)^{2}right)}}dlambda } .以微分的型式可以写成路径的积分:τ = ∫ P d t 2 − d x 2 / c 2 − d y 2 / c 2 − d z 2 / c 2 {displaystyle tau =int _{P}{sqrt {dt^{2}-dx^{2}/c^{2}-dy^{2}/c^{2}-dz^{2}/c^{2}}}} ,此处, P {displaystyle P} 是时钟在时空中的路径。为让事件简化,在狭义相对论中的惯性运动可以转化成对瞬时座标成常数比的空间座标。这进一步简化了原时方程式:Δ τ = Δ t 2 − Δ x 2 / c 2 − Δ y 2 / c 2 − Δ z 2 / c 2 {displaystyle Delta tau ={sqrt {Delta t^{2}-Delta x^{2}/c^{2}-Delta y^{2}/c^{2}-Delta z^{2}/c^{2}}}} ,此处, Δ {displaystyle Delta } 的意思是在两个事件的变化。狭义相对论的方程式是后续的一般状况中的特例。在双胞胎佯谬里。Alice所处座标系统是惯性座标。她座标在所处系统内从 ( 0 , 0 , 0 , 0 ) {displaystyle (0,0,0,0)} 移动到 ( 10 yr , 0 , 0 , 0 ) {displaystyle (10{text{yr}},0,0,0)} :即她在原点 x = y = z = 0 {displaystyle x=y=z=0} 上停留10年。她的原时是:在狭义相对论里,只有在处于静止的座标,原时和座标时间一样。如果另外一人Bob,在Alice的座标内在 ( 0 , 0 , 0 , 0 ) {displaystyle (0,0,0,0)} 出发,以0.8c运动5年到 ( 5 yr , 4 ly , 0 , 0 ) {displaystyle (5{text{yr}},4{text{ly}},0,0)} 。到达后Bob加速(忽略加速过程)、反方向运动再移动5年回Alice的原点 ( 10 yr , 0 , 0 , 0 ) {displaystyle (10{text{yr}},0,0,0)} 。前后两段原时分别是:因此在Bob来回运动原时差是6年。这正等于在Bob座标里经历的座标时间。这表示原时方程式里自动包括了狭义相对论的时间扩张等作用。事实上在狭义相对论时空里运动的物件经历的原时差是:正是时间扩张公式。原时方程式有一个新增的史瓦西解:d τ = ( 1 − 2 m / r ) d t 2 − 1 c 2 ( 1 − 2 m / r ) − 1 d r 2 − r 2 c 2 d θ 2 − r 2 c 2 sin 2 ⁡ θ d ϕ 2 {displaystyle dtau ={sqrt {left(1-2m/rright)dt^{2}-{frac {1}{c^{2}}}left(1-2m/rright)^{-1}dr^{2}-{frac {r^{2}}{c^{2}}}dtheta ^{2}-{frac {r^{2}}{c^{2}}}sin ^{2}theta ;dphi ^{2}}}} ,

相关

  • 牙病牙病是指先天性或后天性的任何牙齿疾病,是人类最常见的疾病之一。
  • 欧亚非大陆亚非欧大陆、亚欧非大陆或欧亚非大陆指的是亚洲、欧洲、非洲三个大陆的合称。在地理上,直到苏伊士运河开通以前,三个大陆是相连的。在文化上,欧洲、亚洲和北非的关系比较接近,特
  • 半导体半导体(英语:Semiconductor)是一种电导率在绝缘体至导体之间的物质。电导率容易受控制的半导体,可作为信息处理的元件材料。从科技或是经济发展的角度来看,半导体非常重要。很多
  • 布鲁诺·罗西布鲁诺·贝内代托·罗西(意大利语:Bruno Benedetto Rossi,/ˈrɑːsi/,意大利语:,1905年4月13日-1993年11月21日),意大利实验物理学家。他对粒子物理学和宇宙射线的研究做出了重大贡
  • 肌卫星细胞肌卫星细胞(Myosatellite cell)是一种位于骨骼肌中的细胞。肌卫星细胞呈扁平形,有突起,通常附着在肌纤维表面。当肌纤维受损伤后,肌卫星细胞可增殖分化,参与肌纤维的修复,具有干细
  • 简·雅各布斯简·雅各布斯(英语:Jane Jacobs,1916年5月4日-2006年4月25日),加拿大籍美国人,她对于城市规划研究的影响最为有名。早年做过记者,速记员,和自由撰稿人。她的著作《美国大城市的死与生
  • 咖啡机咖啡机是一种冲煮咖啡机具的总称。以冲煮出的咖啡来分类,有美式跟意式两种,美式咖啡机因构造简单,以滴滤方法冲调咖啡,机身细小,操作容易,较为一般家庭采用。意式咖啡机以加压后的
  • 片状片剂或锭剂(英语:Tablet)系指药物与辅料混合均匀后经制粒或不经制粒压制成的片状或异型片状制剂可供内服和外用,是目前临床应用最广泛的剂型之一。片剂由药物和辅料二部分组成,辅
  • 帕劳帕劳华人,自19世纪以来,一直在帕劳定居。早期的移民由商人和劳工组成,经常与帕劳妇女通婚。他们的后代迅速被当地民众同化,一般认为自己是帕劳人。近年来,在帕劳1999年与台湾建立
  • 初级颗粒嗜苯胺颗粒(azurophil,或Azurophilic granule)是一种苯胺染色下产生的构造。在勃艮地染色法和梅洛染色法下的白血球和染色质会成现天青色。嗜苯胺颗粒可能会含有髓过氧化物酶、