砷酸为砷(V)的含氧酸,分子式H3AsO4。三元中强酸,酸性及其他性质均类似磷酸。
由五氧化二砷溶于水而得。
反应也可向左进行,如加入五氧化二磷作吸水剂时,又可从砷酸产生五氧化二砷。
砷酸也可由砷或三氧化二砷被浓硝酸氧化而得。该反应会生成副产物三氧化二氮。反应后于29.5°C以下浓缩,可析出砷酸半水合物细小板状结晶。于29.5℃以上,则析出三砷酸(H5As3O10)。
反应结束后,若将所得液体冷却,可得到以无色结晶形式析出的砷酸的半水合物H3AsO4·½H2O。如果进一步降低温度的话,还可以获得砷酸的二水合物H3AsO4·2H2O。
砷酸二水合物(H3AsO4 · 2H2O)只可通过在−30°C下结晶数天得到。
五氧化二砷可缓慢与水反应生成砷酸。元砷酸或焦砷酸与冷水反应同样可以生成砷酸。另外,湿润的砷单质可与臭氧反应生成砷酸
砷酸固体在空气中很快吸潮,产生水合物 H3AsO4 · ½H2O 或 H3AsO4 · 2H2O (于 −30 °C)。平稳加热时,脱水产生三砷酸(H5As3O10)。加热至100°C时,分解为 As2O5 · 1.66H2O。在500°C时全部失水。
饱和水溶液浓度约 80 %。
毒性虽不及亚砷酸,但仍较高。LD50(兔)为6 mg/1 kg。砷酸与砷酸盐在日本被列为医药用外毒物。
无水物结晶溶于水时微吸热。(忽略电离)。
砷酸水溶液的氧化性不强,但比同族的磷酸强。这与其他第4周期元素的含氧酸相似,如硒酸、高溴酸,其氧化性均强于对应的硫酸与高氯酸。
例如砷酸可将碘离子氧化为碘:
此外还有焦砷酸(H4As2O7)与多砷酸(Hn+2AsnO3n+1、(HAsO3)n)。这两者及其酸根离子在水溶液中都是不稳定的,遇水很快分解为砷酸。焦砷酸与多砷酸盐在固态可以是稳定的。
砷酸分子在水溶液中分三步解离,第一步为微强,0.1mol dm-3水溶液的电离度约0.25。第二步与第三步解离很弱,在酸性溶液中可以忽视。
与解离相关的标准焓、吉布斯能、与熵变值列在下面。
砷酸电离可产生三种阴离子:正砷酸根离子(AsO43-)、一氢砷酸根离子(HAsO42-)与二氢砷酸根离子(H2AsO4-)。三种阴离子的盐类均已获得。正砷酸根离子为正四面体结构,类似磷酸根离子;As-O键长169pm。酸液中有微弱的氧化性。
各种砷酸盐可通过用不同计量的碱中和砷酸获得。可溶金属盐与砷酸钠或砷酸氢钠发生复分解,亦可得不可溶的砷酸盐沉淀。
焦砷酸(H4As2O7)与焦磷酸不同,不可通过砷酸加热脱水制得,只能由砷酸氢盐失水得到。
砷酸钠(Na3AsO4)水溶液呈碱性(pH~12)、砷酸一氢钠(Na2HAsO4)水溶液呈弱碱性(pH~9)、砷酸二氢钠(NaH2AsO4)水溶液则呈弱酸性(pH~4.4)。
砷酸钙(Ca3(AsO4)2)用作杀虫剂。砷酸钠可作除草剂,对作物应用效果显著。
正砷酸盐中,碱金属盐、铵盐可溶于水,碱土金属盐等其他盐类则难溶。
砷酸盐矿物可由含砷的硫化矿物经氧化生成,也可由磷酸盐矿物中的磷酸根被砷酸根替换而得。砷酸盐矿物例子如下:
砷酸可用作木材防腐剂(英语:Wood preservation)、广谱生物杀灭剂、玻璃和金属的整理剂,并可参与合成部分染料及一些有机砷化合物。但砷酸毒性强烈,故其商业应用受到了限制。选兔作为实验对象时,砷酸的半致死量为6 mg/kg(0.006 g/kg)。