实变函数论

✍ dations ◷ 2025-07-03 14:33:19 #实分析

实分析(英语:real analysis,也称作实变函数论,英语:theory of real variable function)或实数分析是处理实数及实函数的数学分析。专门实数函数及数列的解析特性,包括实数数列的极限,实函数的微分及积分、连续性,光滑性以及其他相关性质。

实分析常以基础集合论,函数概念定义等等开始。

有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部分的模型都可以用实数为有序域时的基本性质来得到。

实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上限属性。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。

在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象(英语:mathematical object)。特别是许多泛函分析及算子理论(英语:operator theory)中的概念是来自实数中概念的扩展,这类的扩展包括里斯空间(英语:Riesz space)及正算子(英语:positive operator)的理论。也有数学家考虑复数数列的实部及虚部,例如算子数列的逐点评估(英语:strong operator topology)。

序列是一个定义域为可数全序集合的函数,多半会让定义域是自然数或是所有整数。例如,一个实数的序列为以下定义的映射 a : N R ,   n a n {\displaystyle a:\mathbb {N} \to \mathbb {R} ,\ n\mapsto a_{n}} 称为函数的定义域。子集的一些可能选择包括 I = R {\displaystyle I={\boldsymbol {R}}} 和是实数子集,函数 f : X Y {\displaystyle f:X\rightarrow Y} k {\displaystyle k} 包括在分类 C k 1 {\displaystyle C^{k-1}} 都成立。分类 C {\displaystyle C^{\infty }} 的交集,其中为所有的非负整数。 C ω {\displaystyle C^{\omega }} 的宽,则标记分区的网格为长子区间中最宽区间的宽度 m a x i = 1 n Δ i {\displaystyle \mathrm {max} _{i=1\ldots n}\Delta _{i}} 。函数 f {\displaystyle f} 在区间 {\displaystyle } 内的黎曼积分等于 S {\displaystyle S} 若:

若选定的标示都是每个区间内函数的最大值(或最小值),黎曼积分就会成为上(或下)达布和,因此黎曼积分和达布积分有紧密的关系。

勒贝格积分是一种积分概念,可以将积分延伸到更大范围的函数,同时也拓展函数的定义域。

分布或是广义函数是一种将函数扩展后产生的概念。透过分布可以针对一些在传统定义下其导数不存在的函数进行微分(例如单位阶跃函数)。而任何局部可积函数都一定会有广义函数下的导数。

实变函数论是数学分析的一部分,探讨像数列及其极限、连续性、函数的导数及积分。实变分析专注在实数,多半会包括正负无穷大以形成扩展实轴。实变分析和研究复数对应性质的复分析紧密相关。在复分析中,很自然的会对全纯函数定义导数,全纯函数有许多有用的性质,包括多次可微、可以用幂级数表示,而且满足柯西积分公式。

实变分析中也很自然的去考虑可微、光滑函数或调和函数,这些也常常用到,不过仍少了一些复变中全纯函数中有力的性质。而且代数基本定理若以复数表示时会比较简单。

复变中解析函数理论的技巧也可以用在实变分析,例如应用留数定理来计算实变函数的定积分。

实分析的重要结果包括波尔查诺-魏尔斯特拉斯定理、海涅-博雷尔定理、介值定理、中值定理、微积分基本定理及单调收敛定理。

实分析的许多概念可以扩展到广义的度量空间,包括巴拿赫空间及希尔伯特空间。

相关

  • 泡沫细胞泡沫细胞是一种含有大量脂肪的巨噬细胞。泡沫细胞是导致动脉硬化的一种原因,并可能导致心脏病和脑梗塞。当低密度脂蛋白穿过动脉内膜进入血管壁之间时,胆固醇会在那里堆积。当
  • 织丝植物门Nematothalaceae:Nematophytaceae:织丝植物门(Nematophytes)是一个复系的陆地植物门,包含一些仅有化石记录的藻类, 历史可追溯至上志留纪。 模式属织丝体属(Nematothallus)首次描
  • 粪化石粪化石(coprolite),也称粪石、粪团,是指石化了的动物的排泄物,通常是指脊椎动物。属于遗迹化石的一种。粪化石最早由英国古生物学家威廉·巴克兰于1829年进行了描述。粪化石通常
  • 大气电学大气电学(英语:Atmospheric electricity)研究的是地球(也包括其它星球)大气中电磁场的变化规律。地表、电离层以及大气组成全球电路。大气电学是一个交叉性学科。
  • 南大西洋大西洋(西班牙语:Océano Atlántico,葡萄牙语:Oceano Atlântico,英语:Atlantic Ocean),是世界第二大洋。原面积8221万7千平方公里,在南冰洋确立后,面积调整为7676万2千平方公里。平
  • 望诊望诊是四诊之一,医生运用视觉观察人体全身和局部的一切可见迹象,以了解诊视对象身体状况的方法。望诊在四诊中形成和发展最早,内容有望人的精神状态、面部色泽、形体动态、舌象
  • 行政院新闻局行政院新闻局(简称新闻局)为已裁撤之中华民国行政院附属机关,具有部会级地位,成立于1947年5月2日,后随着政府迁台而有多次的缩编与恢复。其主要负责行政院的公共关系、政策宣传、
  • 墨西拿期墨西拿期(英语:Messinian)是中新世的第六个阶段。其起止时间为7.246百万年前和5.333百万年前。
  • 诺思罗普诺斯洛普公司(Northrop Corporation),简称诺普,是美国主要飞机制造商之一。由约翰·诺斯洛普创建。诺斯洛普于1916年在洛克西德航空器制造公司(Loughead)得到其在航空界的第一个工
  • 弧分؋ ​₳ ​฿ ​₿ ​₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​$ ​₫ ​₯ ​֏ ​₠ ​€ ​ƒ(英语:Florin sign) ​₣ ​₲ ​₴(英语:Hryvnia sign) ​₭ ​₺ ​₾ ​₼