实变函数论

✍ dations ◷ 2025-11-28 04:59:47 #实分析

实分析(英语:real analysis,也称作实变函数论,英语:theory of real variable function)或实数分析是处理实数及实函数的数学分析。专门实数函数及数列的解析特性,包括实数数列的极限,实函数的微分及积分、连续性,光滑性以及其他相关性质。

实分析常以基础集合论,函数概念定义等等开始。

有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部分的模型都可以用实数为有序域时的基本性质来得到。

实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上限属性。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。

在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象(英语:mathematical object)。特别是许多泛函分析及算子理论(英语:operator theory)中的概念是来自实数中概念的扩展,这类的扩展包括里斯空间(英语:Riesz space)及正算子(英语:positive operator)的理论。也有数学家考虑复数数列的实部及虚部,例如算子数列的逐点评估(英语:strong operator topology)。

序列是一个定义域为可数全序集合的函数,多半会让定义域是自然数或是所有整数。例如,一个实数的序列为以下定义的映射 a : N R ,   n a n {\displaystyle a:\mathbb {N} \to \mathbb {R} ,\ n\mapsto a_{n}} 称为函数的定义域。子集的一些可能选择包括 I = R {\displaystyle I={\boldsymbol {R}}} 和是实数子集,函数 f : X Y {\displaystyle f:X\rightarrow Y} k {\displaystyle k} 包括在分类 C k 1 {\displaystyle C^{k-1}} 都成立。分类 C {\displaystyle C^{\infty }} 的交集,其中为所有的非负整数。 C ω {\displaystyle C^{\omega }} 的宽,则标记分区的网格为长子区间中最宽区间的宽度 m a x i = 1 n Δ i {\displaystyle \mathrm {max} _{i=1\ldots n}\Delta _{i}} 。函数 f {\displaystyle f} 在区间 {\displaystyle } 内的黎曼积分等于 S {\displaystyle S} 若:

若选定的标示都是每个区间内函数的最大值(或最小值),黎曼积分就会成为上(或下)达布和,因此黎曼积分和达布积分有紧密的关系。

勒贝格积分是一种积分概念,可以将积分延伸到更大范围的函数,同时也拓展函数的定义域。

分布或是广义函数是一种将函数扩展后产生的概念。透过分布可以针对一些在传统定义下其导数不存在的函数进行微分(例如单位阶跃函数)。而任何局部可积函数都一定会有广义函数下的导数。

实变函数论是数学分析的一部分,探讨像数列及其极限、连续性、函数的导数及积分。实变分析专注在实数,多半会包括正负无穷大以形成扩展实轴。实变分析和研究复数对应性质的复分析紧密相关。在复分析中,很自然的会对全纯函数定义导数,全纯函数有许多有用的性质,包括多次可微、可以用幂级数表示,而且满足柯西积分公式。

实变分析中也很自然的去考虑可微、光滑函数或调和函数,这些也常常用到,不过仍少了一些复变中全纯函数中有力的性质。而且代数基本定理若以复数表示时会比较简单。

复变中解析函数理论的技巧也可以用在实变分析,例如应用留数定理来计算实变函数的定积分。

实分析的重要结果包括波尔查诺-魏尔斯特拉斯定理、海涅-博雷尔定理、介值定理、中值定理、微积分基本定理及单调收敛定理。

实分析的许多概念可以扩展到广义的度量空间,包括巴拿赫空间及希尔伯特空间。

相关

  • 加勒比加勒比可以指:
  • 胰凝乳蛋白酶胰凝乳蛋白酶(Chymotrypsin,bovine γ,PDB 1AB9,EC 3.4.21.1),也叫糜蛋白酶。胰凝乳蛋白酶是一种能够分解蛋白质的消化性酶,活性基团为丝氨酸,故属于丝氨酸蛋白酶。胰凝乳蛋白酶在酪
  • 慢病毒属慢病毒属(学名:Lentivirus)是反转录病毒科下的一个属,此属病毒的特征是有较长的时间的潜伏期,例如人类免疫缺陷病毒(HIV)、猴免疫缺陷病毒(SIV)、马传染性贫血(EIA)、 猫免疫缺陷
  • 瑞夫·史坦曼拉尔夫·马文·斯坦曼(英语:Ralph Marvin Steinman,1943年1月14日-2011年9月30日),美国洛克菲勒大学的免疫学家和细胞生物学家。他在1973年提出了树突状细胞的概念与其在后天免疫
  • 精液冷冻贮藏精液冷冻贮藏(Semen cryopreservation)是指以低温保存精子细胞活性的程序。精液可以透过深低温保存永久保存。若考虑以人类精液进行冷冻贮藏,之后又成功受孕的案例,据文献记载贮
  • 城市基础设施基建设施(英语:Infrastructure),亦称公共设施或公共建设,是指为社会生产和居民生活提供公共服务的物质工程设施,它是社会赖以生存发展的一般物质条件。基础设施不仅包括电网、通讯
  • 波弗特海波弗特海(英语:Beaufort Sea;法语:mer de Beaufort),又译蒲福海,是北冰洋的一部分,位于加拿大西北地区、育空和阿拉斯加以北,北极群岛以西,楚科奇海以东。波弗特海面积约450,000平方公
  • 青木原青木原(日语:青木ヶ原/あおきがはら)位于日本富士山西北侧山麓,横跨山梨县富士河口湖町与鸣泽村,周围有西湖、精进湖与本栖湖等堰塞湖。青木原为熔岩台地地形,标高约介于920米~130
  • 朱浩伟朱浩伟(英语:Jonathan Murray "Jon" Chu,1979年11月2日-)是一名华裔美国电影导演和编剧,毕业于南加州大学影视学院。其母亲为台湾人,父亲为中国大陆四川省人。导演的著名作品有《舞
  • 甬江小片宁波话属于吴语太湖片甬江小片,通行于宁波大部分地区以及舟山群岛全境。其分布的主要地域为唐朝至民国时期的宁波府域,包括现宁波市所属海曙区、江北区、镇海区、北仑区、鄞州