实变函数论

✍ dations ◷ 2025-11-26 14:40:59 #实分析

实分析(英语:real analysis,也称作实变函数论,英语:theory of real variable function)或实数分析是处理实数及实函数的数学分析。专门实数函数及数列的解析特性,包括实数数列的极限,实函数的微分及积分、连续性,光滑性以及其他相关性质。

实分析常以基础集合论,函数概念定义等等开始。

有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部分的模型都可以用实数为有序域时的基本性质来得到。

实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上限属性。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。

在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象(英语:mathematical object)。特别是许多泛函分析及算子理论(英语:operator theory)中的概念是来自实数中概念的扩展,这类的扩展包括里斯空间(英语:Riesz space)及正算子(英语:positive operator)的理论。也有数学家考虑复数数列的实部及虚部,例如算子数列的逐点评估(英语:strong operator topology)。

序列是一个定义域为可数全序集合的函数,多半会让定义域是自然数或是所有整数。例如,一个实数的序列为以下定义的映射 a : N R ,   n a n {\displaystyle a:\mathbb {N} \to \mathbb {R} ,\ n\mapsto a_{n}} 称为函数的定义域。子集的一些可能选择包括 I = R {\displaystyle I={\boldsymbol {R}}} 和是实数子集,函数 f : X Y {\displaystyle f:X\rightarrow Y} k {\displaystyle k} 包括在分类 C k 1 {\displaystyle C^{k-1}} 都成立。分类 C {\displaystyle C^{\infty }} 的交集,其中为所有的非负整数。 C ω {\displaystyle C^{\omega }} 的宽,则标记分区的网格为长子区间中最宽区间的宽度 m a x i = 1 n Δ i {\displaystyle \mathrm {max} _{i=1\ldots n}\Delta _{i}} 。函数 f {\displaystyle f} 在区间 {\displaystyle } 内的黎曼积分等于 S {\displaystyle S} 若:

若选定的标示都是每个区间内函数的最大值(或最小值),黎曼积分就会成为上(或下)达布和,因此黎曼积分和达布积分有紧密的关系。

勒贝格积分是一种积分概念,可以将积分延伸到更大范围的函数,同时也拓展函数的定义域。

分布或是广义函数是一种将函数扩展后产生的概念。透过分布可以针对一些在传统定义下其导数不存在的函数进行微分(例如单位阶跃函数)。而任何局部可积函数都一定会有广义函数下的导数。

实变函数论是数学分析的一部分,探讨像数列及其极限、连续性、函数的导数及积分。实变分析专注在实数,多半会包括正负无穷大以形成扩展实轴。实变分析和研究复数对应性质的复分析紧密相关。在复分析中,很自然的会对全纯函数定义导数,全纯函数有许多有用的性质,包括多次可微、可以用幂级数表示,而且满足柯西积分公式。

实变分析中也很自然的去考虑可微、光滑函数或调和函数,这些也常常用到,不过仍少了一些复变中全纯函数中有力的性质。而且代数基本定理若以复数表示时会比较简单。

复变中解析函数理论的技巧也可以用在实变分析,例如应用留数定理来计算实变函数的定积分。

实分析的重要结果包括波尔查诺-魏尔斯特拉斯定理、海涅-博雷尔定理、介值定理、中值定理、微积分基本定理及单调收敛定理。

实分析的许多概念可以扩展到广义的度量空间,包括巴拿赫空间及希尔伯特空间。

相关

  • 痘病毒亚科 痘病毒脊索亚科(Chordopoxvirinae)    正痘病毒属(Orthopoxvirus)    副痘病毒属(Parapoxvirus)    禽痘病毒属(Avipoxvirus)    山羊痘病毒属(Capripoxvi
  • 桑黄桑黄(Sanghuangporus sanghuang),又称桑耳、桑臣,为锈革菌科桑黄属的物种,也是桑黄孔菌属的模式种。本种生长于桑属植物的树干上。具有抗氧化、抗发炎、提升免疫力、抗癌、护肝、
  • 生物化学物质生物化学(英语:biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核
  • 尼加拉瓜手语尼加拉瓜手语(简称ISN,即Idioma de Señas de Nicaragua或Idioma de Signos Nicaragüense)是在二十世纪七十年代至八十年代由西尼加拉瓜众多学校内的失聪儿童自发性地发展出来
  • 巴瑞特氏食道症巴雷斯特食道症(Barrett's esophagus)又称为巴洛氏食道症、巴雷特症候群、巴瑞特氏食道症,是一种食道细胞病变的症状,是远端食道黏膜的鳞状上皮细胞由柱状上皮细胞所取代的病变,
  • 平行六面体在几何学中,平行六面体是由六个平行四边形所组成的三维立体,是一种平行多面体。它与平行四边形的关系,正如正方体与正方形之间的关系;在欧几里得几何中这四个概念都允许,但在仿射
  • 都会传奇都市传说(英语:urban legend),又称现代传说(英语:contemporary legend)、都市怪谈,是一种主要以现代化生活为背景,由叙述者煞有其事地讲述,以新奇、怪诞或吓人情节为主要特色的短篇幅
  • 杰普河杰普河是俄罗斯的河流,由阿穆尔州负责管辖,属于结雅河的左支流,河道全长348公里,流域面10,400平方公里,河水主要来自雨水,下游流经低地和沼泽。
  • 伊斯兰原教旨主义伊斯兰原教旨主义(英语:Islamic fundamentalism,也称“伊斯兰基本教义派”或“伊斯兰原理主义”)是伊斯兰世界的一种原教旨主义思潮。原教旨主义主张根据《可兰经》来严格管理个
  • 埃夫佐尼埃夫佐尼(单数)或者埃夫佐内斯(复数,希腊语:Εύζωνες, Εύζωνοι,)是希腊陆军历史上前后数支精锐轻步兵部队和山地部队的总称。今日,埃夫佐尼指的是总统卫队(希腊语:Προ