实变函数论

✍ dations ◷ 2025-11-23 06:26:57 #实分析

实分析(英语:real analysis,也称作实变函数论,英语:theory of real variable function)或实数分析是处理实数及实函数的数学分析。专门实数函数及数列的解析特性,包括实数数列的极限,实函数的微分及积分、连续性,光滑性以及其他相关性质。

实分析常以基础集合论,函数概念定义等等开始。

有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部分的模型都可以用实数为有序域时的基本性质来得到。

实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上限属性。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。

在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象(英语:mathematical object)。特别是许多泛函分析及算子理论(英语:operator theory)中的概念是来自实数中概念的扩展,这类的扩展包括里斯空间(英语:Riesz space)及正算子(英语:positive operator)的理论。也有数学家考虑复数数列的实部及虚部,例如算子数列的逐点评估(英语:strong operator topology)。

序列是一个定义域为可数全序集合的函数,多半会让定义域是自然数或是所有整数。例如,一个实数的序列为以下定义的映射 a : N R ,   n a n {\displaystyle a:\mathbb {N} \to \mathbb {R} ,\ n\mapsto a_{n}} 称为函数的定义域。子集的一些可能选择包括 I = R {\displaystyle I={\boldsymbol {R}}} 和是实数子集,函数 f : X Y {\displaystyle f:X\rightarrow Y} k {\displaystyle k} 包括在分类 C k 1 {\displaystyle C^{k-1}} 都成立。分类 C {\displaystyle C^{\infty }} 的交集,其中为所有的非负整数。 C ω {\displaystyle C^{\omega }} 的宽,则标记分区的网格为长子区间中最宽区间的宽度 m a x i = 1 n Δ i {\displaystyle \mathrm {max} _{i=1\ldots n}\Delta _{i}} 。函数 f {\displaystyle f} 在区间 {\displaystyle } 内的黎曼积分等于 S {\displaystyle S} 若:

若选定的标示都是每个区间内函数的最大值(或最小值),黎曼积分就会成为上(或下)达布和,因此黎曼积分和达布积分有紧密的关系。

勒贝格积分是一种积分概念,可以将积分延伸到更大范围的函数,同时也拓展函数的定义域。

分布或是广义函数是一种将函数扩展后产生的概念。透过分布可以针对一些在传统定义下其导数不存在的函数进行微分(例如单位阶跃函数)。而任何局部可积函数都一定会有广义函数下的导数。

实变函数论是数学分析的一部分,探讨像数列及其极限、连续性、函数的导数及积分。实变分析专注在实数,多半会包括正负无穷大以形成扩展实轴。实变分析和研究复数对应性质的复分析紧密相关。在复分析中,很自然的会对全纯函数定义导数,全纯函数有许多有用的性质,包括多次可微、可以用幂级数表示,而且满足柯西积分公式。

实变分析中也很自然的去考虑可微、光滑函数或调和函数,这些也常常用到,不过仍少了一些复变中全纯函数中有力的性质。而且代数基本定理若以复数表示时会比较简单。

复变中解析函数理论的技巧也可以用在实变分析,例如应用留数定理来计算实变函数的定积分。

实分析的重要结果包括波尔查诺-魏尔斯特拉斯定理、海涅-博雷尔定理、介值定理、中值定理、微积分基本定理及单调收敛定理。

实分析的许多概念可以扩展到广义的度量空间,包括巴拿赫空间及希尔伯特空间。

相关

  • 曼尼普尔Dr. Najma Heptulla曼尼普尔邦(印地语:मणिपुर,孟加拉语:মণিপুর,IAST转写:Maṇipūr)是印度东北的一个邦。该邦成立于1972年,东以缅甸为界,西与阿萨姆邦相连,南以米佐拉
  • 麻省马萨诸塞州(英语:Commonwealth of Massachusetts),简称麻省、麻州,正式名称为马萨诸塞联邦,是位于美国东北部的州,为美国独立时最初的十三州之一,也是新英格兰六州里人口最密集的一
  • 麻婆豆腐麻婆豆腐,是四大中国菜系中代表川菜的一种。主要食材有豆腐、牛肉碎或猪肉碎、辣椒、和花椒等。其中,麻的味觉是来自花椒,而辣的味觉则是来自辣椒。这道菜突显出了川菜“麻辣”
  • 惠康基金会惠康基金会(英语:Wellcome Trust),中文亦称“惠康信托”、“维尔康基金”、“维康基金”或“卫尔康基金”,是英国最大的慈善基金会之一,致力于提高公民和动物的健康福利事业。维康
  • 哈密顿算符量子力学中,哈密顿算符(英语:Hamiltonian,缩写符号:H或 H ^
  • 意外事故意外事故是指一件在指定时间和地点不经常发生的事件,对事件中的当事人而言是没有预计过的,而且这事件会为主角及其身边的人带来某种后果,而后果多数来说都是负面的。意外是很大
  • 荷兰卫生部荷兰政府与政治 系列条目荷兰卫生、福利及体育部(荷兰语:Ministerie van Volksgezondheid, Welzijn en Sport,VWS)是荷兰掌管公共卫生的部会,设有一位大臣,及一位不管部大臣掌管青
  • 海棠区海棠区,是中华人民共和国海南省三亚市的一个市辖区,辖原三亚市海棠湾镇的行政区域,共计3个社区和19个行政村。总面积255平方千米,总人口约9万人。
  • 山东卫视山东卫视是山东电视台旗下的综合卫星频道,简称SDTV-1,前身为山东电视台一套。频道于1994年1月1日通过亚太1A卫星发射,实现全国及周边国家的覆盖,并于同年5月23日起,开始全天24小
  • 萨穆埃尔·哈内曼克里斯蒂安·弗里德里希·萨穆埃尔·哈内曼 ( 德语:Christian Friedrich Samuel Hahnemann,1755年4月10日 – 1843年7月2日) 是一位德国医生,以创立一种名为顺势疗法的另类医学