在数学上,如果一个自然数 n = p × q ,即一个半质数,其中 p 和 q 是相异的质数,且模 4 之值皆为 3 。也就是说 p 、q 皆为 4t + 3 的形式(t 是某个整数)。则 n 是一个“布卢姆整数”。而此时前述的 p、q 称为“布卢姆质数”。 这也就表示,布卢姆整数的因数是没有虚数项的高斯质数。
前几个布卢姆整数如下:
这些整数以计算机科学家曼纽尔﹒布卢姆之名命名。
给定一个布卢姆整数 = 为所有模 n 下的二次剩余并与 n 互质之数的集合,以及一数 a ∈ Q。则:
在现代质因数分解算法,如 MPQS 和 NFS ,发展出来前,人们认为在选择作为 RSA 的模数时,布卢姆整数很有用。
现今已不再认为此为合理的措施。因为 MPQS 以及 NFS 能够像,随机选择质数去构造出来的 RSA 模数一样容易地去分解布卢姆整数。