欧拉示性数

✍ dations ◷ 2025-06-08 01:48:54 #几何术语,勒内·笛卡尔,代数拓扑,拓扑图论

在代数拓扑中,欧拉示性数(Euler characteristic)是一个拓扑不变量(事实上,是同伦不变量),对于一大类拓扑空间有定义。它通常记作 χ {\displaystyle \chi } ,和分别是点,边和面的个数。特别的有,对于所有和一个球面同胚的多面体,我们有

例如,对于立方体,我们有6 − 12 + 8 = 2而对于四面体我们有4 − 6 + 4 = 2.刚才的公式也叫做欧拉公式。该公式最早由法国数学家笛卡儿于1635年左右证明,但不为人知。后瑞士数学家莱昂哈德·欧拉于1750年独立证明了这个公式。1860年,笛卡儿的工作被发现,此后该公式遂被称为欧拉-笛卡儿公式。

对于有限CW-复形(CW-Complex)包括有限单纯复形(simplicial complex),欧拉示性数可以定义为交错和

其中 k i {\displaystyle k_{i}} 来计算

闭不可定向曲面的欧拉示性数可以用下式通过它们的(不可定向)亏格来计算

欧拉示性数和三角化的选择无关。公式也可用于到任意多边形的分解。

对于圆盘,我们有 χ = 1 {\displaystyle \chi =1} 个贝蒂数 b n {\displaystyle b_{n}} 个同调群的阶。欧拉示性数可以定义为如下交换和

这个定义在贝蒂数全都有限并且在一个特定指标 n 0 {\displaystyle n_{0}} 和是拓扑空间,则它们的积空间 × 的欧拉示性数为

有界偏序集(partially ordered set,简称poset)的欧拉示性数的概念是另一种推广,在组合论中很重要。一个偏序集“有界”,如果它有最小和最大元素,我们把它们叫作0和1。这样一个偏序集的欧拉示性数是μ(0,1),其中μ是在偏序集的相交代数(incidence algebra)中的默比乌斯函数。

第一个欧拉公式的严格证明,由20岁的柯西给出,大致如下:

从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。不失一般性,可以假设变形的边继续保持为直线段。正常的面不再是正常的多边形即使开始的时候它们是正常的。但是,点,边和面的个数保持不变,和给定多面体的一样(移去的面对应网络的外部。)

重复一系列可以简化网络却不改变其欧拉数(也是欧拉示性数) − + 的额外变换。

重复使用第2步和第3步直到只剩一个三角形。对于一个三角形 = 2(把外部数在内), = 3, = 3。所以 − + = 2。证毕。

相关

  • bspan style=color:black;⑯/span/b坐标:40°13′00″N 26°26′00″E / 40.216667°N 26.433333°E / 40.216667; 26.433333达达尼尔海峡(希腊语:Δαρδανέλλια,转写:Dardanéllia),土耳其称恰纳卡莱海峡(土
  • 眼屈光不正眼屈光不正(Refractive error),系指因眼球形状而让光无法成功聚焦在视网膜上的问题。常见的典型眼屈光不正有近视、远视、散光和老花眼等。近视是因为看远方物体会模糊不清楚,远
  • 黄体激素孕酮(英语:progesterone,亦被称为黄体酮、孕甾酮、黄体甾酮、助孕激素、助孕素、黄体素或助孕酮,其缩写为P4,也被称为(孕甾-4-烯-3,20-二酮),是一种内源性类固醇和孕激素性激素,也
  • 贝叶斯网络贝叶斯网络(Bayesian network),又称信念网络(belief network)或是有向无环图模型(directed acyclic graphical model),是一种概率图型模型,借由有向无环图(directed acyclic graphs, o
  • 澎湖县政府坐标:23°34′12″N 119°33′59″E / 23.57°N 119.566472°E / 23.57; 119.566472澎湖县政府是中华民国台湾省澎湖县最高层级的地方行政机关,在中华民国政府架构中为县自治
  • span class=nowrapCmClsub3/sub/span氯化锔是一种无机化合物,化学式CmCl3,有很强的放射性。氯化锔可由氧化锔和四氯化碳或氯化氢气体加热至400~500℃反应得到。氯化锔易溶于水,其水溶液是无色的。氯化锔在加热下,可
  • 荆门市荆门市是中华人民共和国湖北省下辖的地级市,位于湖北省中部。市境南临荆州市、潜江市、天门市,东接孝感市,东北界随州市,西北毗襄阳市,西达宜昌市。地处江汉平原西北部,西北部为荆
  • 反垄断1999年规定:印章直径5厘米,中央刊五角星,由国务院制发。国务院反垄断委员会,是中华人民共和国国务院成立的国务院议事协调机构,负责反垄断工作。2007年8月30日,第十届全国人民代表
  • 上密歇根半岛密歇根上半岛 (英语:Upper Peninsula of Michigan),简称上半岛 (Template:The Upper Peninsula、Template:The U.P.),又称上密歇根 (Template:Upper Michigan),更通俗的称呼为“桥以北
  • 平阴县平阴县,别名玫城,是中华人民共和国山东省济南市下辖的一个县,为济南市西南的一个远郊县,面积714.95平方千米。2016年总人口37万4千余人。平阴县以“东原之阴”而得名。因其盛产