首页 >
三面体
✍ dations ◷ 2025-10-18 00:14:25 #三面体
在几何学中,三面体(英文:Trihedron)是指由3个面组成的多面体。面为平面的三面体在三维空间不能存在,因为要至少四个顶点才能在三维空间形成有体积的多面体,除非它的面是曲面,或是存在四维超球面。此外,有一种抽象(英语:Abstract_polytope)射影多面体(英语:Projective polyhedron)是三面体,即半立方体。由于三维空间中的单纯形是四面体,面数少于4的多面体都只能成为退化多面体,因此三面体都不能真正具有体积。在球面镶嵌中,常见的三面体是三面形。亦有一种正抽象多面体是三面体,其为半立方体。尽管面为平面的三面体在三维空间不能存在,但在球面几何学中,三面体可以以球面镶嵌的方式存在,最简单的例子是三面形。一个正三面形,表示三个镶嵌在球体上的球弓形,施莱夫利符号中利用{2,3}来表示,其对偶多面体是三角形二面体。三面形是一个退化的多面体,其无法拥有体积。三面形由3个二角形组成,每个顶点都是3个二角形的公共顶点。正三面形的每个面都是正二角形,且每个顶点都是3个正二角形的公共顶点,因此正三面形也可以视为一种正多面体,但是因为其已退化,因此不会与柏拉图立体一同讨论。三面形具有 D3h, , (*223) 的对称性和 D3, + 的旋转对称性,且阶数为12,在考克斯特符号中用表示。圆柱也能算是一种非严格的三面体,因为它可以看做是只有三个面的几何体,由一曲面(侧面)和两个圆形平面(底面)所组成。三胞体是指有三个胞或维面的多胞体。其为三面体在四维或更高维度的类比,但由于四维空间的单纯形是五胞体,任何面数边树或顶点数小于单纯形的图形都只能退化或成为球面镶嵌,即无法具有非零的体积。
相关
- 卡洛·乌尔巴尼卡洛·乌尔巴尼(意大利语:Carlo Urbani,1956年10月19日-2003年3月29日),又译乌尔班尼或厄巴尼,意大利医生,是首位留意到SARS是一种全新传染病的医生。乌尔巴尼是无国界医生意大利分
- 东亚日报《东亚日报》(朝鲜语:동아일보/東亞日報)是大韩民国的一家报纸。由韩国的媒体人金性洙、宋镇禹创刊于1920年4月1日。总部位于首尔特别市锺路区。日发行量2,068,647份(韩国发行公
- 幽门括约肌幽门(pylorus)是胃和十二指肠的连接口,包含幽门窦(pyloric antrum)和幽门管(pyloric canal)两个部分。幽门括约肌(pyloric sphincter)在幽门管末端,可以控制食物从胃进入十二指肠的过
- 人文地理学人文地理学(英语:Human geography),是一类社会科学分支,关于研究世界、人类社会、文化、经济与环境的相互作用,强调空间和地区的关系。作为一门学科,地理分为自然地理和人文地理,后
- 克劳斯·冯·克利钦克劳斯·冯·克利青(德语:Klaus von Klitzing,1943年6月28日-),德国物理学家。他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。冯·
- 彩礼聘礼是指男女结婚,新郎或其家庭给予新娘父母的一部分金钱、财产或礼物,如为金钱又称为聘金。从人类学角度来看,在古代时聘礼是一种市场经济行为,用以交换新娘家庭所损失的劳动力
- 国立健康研究院美国国立卫生研究院(英语:National Institutes of Health,缩写为NIH),隶属于美国卫生与公众服务部,是美国联邦政府中首要的生物医学研究机构。2006年的资料显示,此机构花费美国全国
- 控制体积控制体积是流体力学及热力学中,为一物理现象建立数学模型时会用到的一个名词。在惯性参考系中,控制体积可能是一固定的区域,或者是随着流体运动。控制体积的表面也称为控制表面
- 地球上海洋的起源地球上水的来源,或者说地球上的液态水明显比太阳系其他类地行星多的原因,目前尚不清楚。过去45亿年来,水如何在地球表面不断积累并形成大洋,存在着许多假设。对锆石的一项研究发
- 梨囊鞭菌属梨囊鞭菌属是新美鞭菌门新美鞭菌科真菌的一属。其学名来自古希腊语词根pyro-(梨)和mykēs(真菌),指其孢子囊为梨形。