高斯轨道

✍ dations ◷ 2025-06-27 03:41:48 #分子物理学,量子化学,计算化学

高斯轨道(又称高斯型轨道,英语:Gaussian type orbital,简写为GTO),在计算化学和理论化学中是表示原子轨道的函数,在原子轨道线性组合法中用于求算分子轨道及其性质。

1950年,弗兰克西·博伊斯(英语:S. Francis Boys)在电子结构理论中首次用高斯轨道取代更多的斯莱特型轨道(英语:Slater-type orbital)。在计算化学中使用高斯轨道基组的依据是高斯乘积定理(Gaussian Product Theorem):对于两个中心分别位于空间中两个分隔的点上的高斯函数,它们的积可以表示为中心位于这两个点的连线上某处的有限个高斯函数的加和。运用此方法,四中心积分可以减少为双中心积分的有限和,下一步中减少为单中心积分的有限和。通过大幅减少基函数(英语:basis function),高斯轨道的计算速度比斯莱特型轨道(英语:Slater-type orbital)快4-5个数量级。

简便起见,求球面高斯轨道时,许多量子化学程序在笛卡尔型高斯函数的基础上工作,因为其容易计算,且球面函数可以用其简单表达。

高斯基函数遵循通常的径向角分解:

其中 Y l m ( θ , ϕ ) {\displaystyle Y_{lm}(\theta ,\phi )} 表示球谐函数, l {\displaystyle l} m {\displaystyle m} 表示角动量及其 z {\displaystyle z} 轴上的分量, r , θ , ϕ {\displaystyle r,\theta ,\phi } 为球坐标。

斯莱特型轨道(英语:Slater-type orbital)的径向部分为:

其中 A ( l , α ) {\displaystyle A(l,\alpha )} 为归一化常数。高斯轨道的径向部分为:

其中 B ( l , α ) {\displaystyle B(l,\alpha )} 为高斯轨道的归一化常数。

决定 A ( l , α ) {\displaystyle A(l,\alpha )} B ( l , α ) {\displaystyle B(l,\alpha )} 的规范化条件为:

通常不会在 l {\displaystyle l} 中施加正交性。

单个原始高斯函数对核附近电子的波函数给出的描述很差,因此高斯轨道基组几乎总是收缩:

其中 c p {\displaystyle c_{p}} 是带指数 α p {\displaystyle \alpha _{p}} 的原函数的收缩系数。归一化原函数的系数需要给定,因为非标准化原函数的系数有不同的数量级。指数以原子单位制报告。

1966年,竹田等人提出了在高斯基组上获得矩阵元素所需的数学方程。此后,做了大量工作来加快这些积分的计算,这些积分是许多量子化学计算中最慢的部分。1968年,济夫科维奇和梅克赛奇提议使用埃尔米特-程灿高斯函数来简化方程。1975年,麦克默里和戴维森采用了递归关系,大大减少了运算量。1978年,波普尔和赫雷使用了局部坐标法。1985年,奥巴拉和西卡采用了有效的递归关系,并发展了其它重要的递推关系。1991年,吉尔和波普尔引入了一个“PRISM”算法,可以有效地使用20个不同的计算路径。

POLYATOM系统是第一个使用高斯轨道进行从头计算的软件,其应用于各种各样的分子,是在麻省理工学院约翰·斯莱特(英语:John C. SlaterSlater)的固态和分子理论组(SSMTG)中使用联合计算实验室的资源开发。其中,数学基础设施和操作软件由尔·克赛兹马迪亚(匈牙利语:Csizmadia_Imre_Gyula)、马尔科姆·哈里森、儒勒·莫斯科维茨及布莱恩·苏特克里夫等人开发。

相关

  • 意大利电信集团意大利电信(意大利语:Telecom Italia)是意大利的电信公司,总部位于罗马。提供电话服务,移动通信服务和DSL数据服务。该公司成立于1994年,由数家国有电信公司合并而成,其中最重要的
  • 梦溪笔谈《梦溪笔谈》是北宋的沈括所著的笔记体著作,大约成书于1086年-1093年,分为26卷,又《补笔谈》3卷,《续笔谈》1卷。因为写于润州(今镇江)梦溪园而得名,收录了沈括一生的所见所闻和见解
  • 针灸铜人经络铜人又叫针灸铜人,是一种刻有穴位名称的人体铜像,有男女形体之分,是形象直观的针灸穴位模型。针灸始于春秋战国时期,宋代以前,对针灸的经络腧穴只有以文字叙述或图形表示,而且
  • 单孔目单孔目(学名:Monotremata)是哺乳纲动物中原兽亚纲的仅有的一目。只分布在大洋洲地区,主要在澳大利亚东部及塔斯曼尼亚生活,是一群卵生哺乳类。历史上曾存在另外两个科,但都已灭绝
  • 三市街三市街指的是台湾台北市西区市中心的三处市街:这三处街区原为相邻的聚落,经过19世纪末以来的发展,已经连成一气。自台北在1885年成为台湾行政中心以来,至1970年代台北东区兴起前
  • 佩雷菲特佩雷菲特是瑞士的一个镇,位于该国中西部,由伯恩州负责管辖,面积8.57平方公里,海拔高度600米,2011年人口464,四成人口信奉基督教,人口密度每平方公里54人。
  • 大熊猫基金环保与节能基金(葡萄牙语:Fundo dos Pandas,葡文缩写:FP),是为配合澳门特别行政区的保育大熊猫政策的目标,对开展相关的教育、研究及项目提供资助而设立的基金。基金由行政管理委员
  • 哈得孙河哈德逊河(英语:Hudson River,又译赫逊河)是美国纽约州的大河,长507公里,发源于纽约上州阿第伦达克山脉,上游分出莫华克河,西接伊利运河(可达五大湖),流经哈德逊河谷后汇入纽约港,是纽约
  • 马丁·库帕马丁·劳伦斯·库帕(英语:Martin Lawrence Cooper,1928年12月26日-),生于美国伊利诺伊州芝加哥市,美国发明家,因为率先研发出移动电话,被称为移动电话之父。生于美国伊利诺伊芝加哥,马
  • 夏尔·沃尔夫夏尔·约瑟夫·埃坚纳·沃尔夫(法语:Charles Joseph Étienne Wolf,1827年11月9日-1918年7月4日)是一位法国天文学家,沃尔夫–拉叶星的其中一位发现者。沃尔夫于1827年生于法国沃