高斯轨道

✍ dations ◷ 2025-04-04 11:04:16 #分子物理学,量子化学,计算化学

高斯轨道(又称高斯型轨道,英语:Gaussian type orbital,简写为GTO),在计算化学和理论化学中是表示原子轨道的函数,在原子轨道线性组合法中用于求算分子轨道及其性质。

1950年,弗兰克西·博伊斯(英语:S. Francis Boys)在电子结构理论中首次用高斯轨道取代更多的斯莱特型轨道(英语:Slater-type orbital)。在计算化学中使用高斯轨道基组的依据是高斯乘积定理(Gaussian Product Theorem):对于两个中心分别位于空间中两个分隔的点上的高斯函数,它们的积可以表示为中心位于这两个点的连线上某处的有限个高斯函数的加和。运用此方法,四中心积分可以减少为双中心积分的有限和,下一步中减少为单中心积分的有限和。通过大幅减少基函数(英语:basis function),高斯轨道的计算速度比斯莱特型轨道(英语:Slater-type orbital)快4-5个数量级。

简便起见,求球面高斯轨道时,许多量子化学程序在笛卡尔型高斯函数的基础上工作,因为其容易计算,且球面函数可以用其简单表达。

高斯基函数遵循通常的径向角分解:

其中 Y l m ( θ , ϕ ) {\displaystyle Y_{lm}(\theta ,\phi )} 表示球谐函数, l {\displaystyle l} m {\displaystyle m} 表示角动量及其 z {\displaystyle z} 轴上的分量, r , θ , ϕ {\displaystyle r,\theta ,\phi } 为球坐标。

斯莱特型轨道(英语:Slater-type orbital)的径向部分为:

其中 A ( l , α ) {\displaystyle A(l,\alpha )} 为归一化常数。高斯轨道的径向部分为:

其中 B ( l , α ) {\displaystyle B(l,\alpha )} 为高斯轨道的归一化常数。

决定 A ( l , α ) {\displaystyle A(l,\alpha )} B ( l , α ) {\displaystyle B(l,\alpha )} 的规范化条件为:

通常不会在 l {\displaystyle l} 中施加正交性。

单个原始高斯函数对核附近电子的波函数给出的描述很差,因此高斯轨道基组几乎总是收缩:

其中 c p {\displaystyle c_{p}} 是带指数 α p {\displaystyle \alpha _{p}} 的原函数的收缩系数。归一化原函数的系数需要给定,因为非标准化原函数的系数有不同的数量级。指数以原子单位制报告。

1966年,竹田等人提出了在高斯基组上获得矩阵元素所需的数学方程。此后,做了大量工作来加快这些积分的计算,这些积分是许多量子化学计算中最慢的部分。1968年,济夫科维奇和梅克赛奇提议使用埃尔米特-程灿高斯函数来简化方程。1975年,麦克默里和戴维森采用了递归关系,大大减少了运算量。1978年,波普尔和赫雷使用了局部坐标法。1985年,奥巴拉和西卡采用了有效的递归关系,并发展了其它重要的递推关系。1991年,吉尔和波普尔引入了一个“PRISM”算法,可以有效地使用20个不同的计算路径。

POLYATOM系统是第一个使用高斯轨道进行从头计算的软件,其应用于各种各样的分子,是在麻省理工学院约翰·斯莱特(英语:John C. SlaterSlater)的固态和分子理论组(SSMTG)中使用联合计算实验室的资源开发。其中,数学基础设施和操作软件由尔·克赛兹马迪亚(匈牙利语:Csizmadia_Imre_Gyula)、马尔科姆·哈里森、儒勒·莫斯科维茨及布莱恩·苏特克里夫等人开发。

相关

  • 心理药物学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 摄动摄动(Perturbation)是天文学上的一个术语(专有名词),是用来描述一个大质量天体受到一个以上质量体的引力影响而可察觉的复杂运动。这种天体的复杂运动可以分成不同的成分而加以描
  • span class=nowrapSr(NOsub3/sub)sub2/sub/span硝酸锶是一种无机化合物,化学式为Sr(NO3)2。硝酸锶是一种无色或白色等轴晶系结晶,易溶于水、液氨,微溶于无水乙醇和丙酮。加热时先放出氧生成亚硝酸锶,继续加热则分解为氧化锶,并
  • 麦克·彭博迈克尔·鲁本斯·布隆伯格,KBE(英语:Michael Rubens Bloomberg,1942年2月14日-),美国商人,第三代俄罗斯犹太移民,彭博有限合伙企业创始人,2001年至2013年间担任纽约市市长,C40城市气候
  • 乔·科特尼乔·科特尼(Joe Courtney ;1953年4月6日-)是美国的一位政治人物。自2007年开始,他是康涅狄格州第2选举区选出的美国众议院议员。他的党籍是民主党。科特尼毕业于塔夫茨大学。他已
  • 去吧,摩西《去吧,摩西》(英语:Go Down, Moses)是威廉·福克纳的一部长篇小说,1942年5月11日出版。小说由从属于同一主题的多篇故事组成,讲述了麦卡斯林家族的命运。这个家族是约克纳帕塔法
  • 洲际交易所洲际交易所集团(英语:Intercontinental Exchange, Inc.,NYSE:ICE),是美国一网上期货交易平台,亦提供能源及商品及其衍生产品的柜台买卖(OTC)服务。集团最初主要经营能源相关产品,例如:
  • 凯瑟琳·T·麦克阿瑟凯瑟琳·T·麦克阿瑟 (英语:Catherine T. MacArthur, 1908年11月23日-1981年12月15日) 是美国商人和慈善家约翰·D·麦克阿瑟的第二任妻子,与丈夫共同创建麦克阿瑟基金会并积极
  • NeruNeru(押入れP)生日为 (1992-08-10) 1992年8月10日(27岁),是一名于Niconico动画及YouTube上公开发表乐曲的VOCALOID歌曲创作者。 初投稿的作品为“風音のクロニクル”,于2009年11月
  • 乔治·阿波乔治·华盛顿·阿波(英语:George Washington Appo,1856年6月4日-1930年5月17日)生于纽黑文,逝世于纽约。是一位美籍华裔-爱尔兰裔的罪犯。在多年行窃、诈骗和贩毒后,他成为了纽约市