皮亚诺存在性定理

✍ dations ◷ 2025-07-12 18:19:28 #数学定理,微分方程

在数学中, 特别是在常微分方程的研究中,皮亚诺存在定理(又称为皮亚诺定理、柯西-皮亚诺定理)是以数学家朱塞佩·皮亚诺的名字命名的一个定理。这个定理是常微分方程研究中的基本定理之一,保证了微分方程在一定的初始条件下的解的存在性。

这个定理最早由数学家朱塞佩·皮亚诺在1886年发表,但是他给出的证明是错误的。1890年他又发表了一个正确的运用逐次逼近法的证明。

设 为R × R 的一个开子集,以及一个连续函数:

皮亚诺存在定理:定义在 上的一个一阶线性常微分方程(其中 ( x 0 , y 0 ) D {\displaystyle (x_{0},y_{0})\in D} ,以及一个函数:

皮亚诺存在定理可以和另外一个存在性定理:皮卡-林德洛夫定理作比较。相比起皮亚诺存在定理,皮卡-林德洛夫定理对函数 f {\displaystyle f} 的附近,都有一个常数 K x {\displaystyle K_{x}} 和一个邻域 I x {\displaystyle I_{x}} ,使得对于 I x {\displaystyle I_{x}} 中任意的 a {\displaystyle a} b {\displaystyle b} 两点,都有:

这个要求比单纯的连续性要高,但是得出的结论也更强了:皮卡-林德洛夫定理说明,在满足上述要求时,微分方程的局部解不仅存在而且是唯一的。

T > 0 {\displaystyle T>0} 为一个常数,考虑函数

根据皮亚诺存在定理,由于函数 f : x | x | 1 2 {\displaystyle f:x\to \left\vert x\right\vert ^{\frac {1}{2}}} {\displaystyle \left} 上连续,微分方程有解。但由于 f {\displaystyle f} 在0处的导数为正无穷, f {\displaystyle f} {\displaystyle \left} 上不满足利普希茨条件,于是解不一定是唯一的。事实上:对于任意的 0 < t 0 < T {\displaystyle 0<t_{0}<T} ,定义为:当 t t 0 {\displaystyle t\leq t_{0}} h ( t ) = ( t t 0 ) 2 / 4 {\displaystyle h(t)=(t-t_{0})^{2}/4} ,当 t 0 t T {\displaystyle t_{0}\leq t\leq T} y = 0 {\displaystyle y=0} 的函数 h {\displaystyle h} 都是微分方程的解,也就是说解有无穷多个。这个反例来源于一个物理模型:假设有一个漏水的容器,其水面高度(函数 h {\displaystyle h} )和时间的关系由以上的微分方程定义的话,那么由于事实上可以观测到漏水的过程,所以方程一定有解。但如果只知道容器在漏完水后的某个时刻的状态( y ( T ) = 0 {\displaystyle y(T)=0} )的话,是无法倒过来推测原来的水位有多高的(也就是说没有唯一解)。

相关

  • 人口索引 国防预算 石油储量 军事(武装部队) 死刑 国债 生育率 最高点 官方语言 地理 政体 面积 代码 陆地面积 人口 人口密度 国内生产总值 国徽 国旗 国歌 国家格言 首都 城市
  • 三体染色体三倍体症,又名三体综合征,是一种因为遗传基因失调而引起的染色体倍性现象,以致身体细胞分裂时,某一对染色体得到了三条,而不是正常的两条。三体综合征在不同的基因对出现,会
  • 总督宫总督宫可以指:
  • 1998年本土世界杯1998年国际足联世界杯(英语:1998 FIFA World Cup,法语:Coupe du Monde – France 98,1998年6月10日–7月12日),通常称为“98年法国世界杯”、France '98,于1998年在法国举行。法国队
  • 独立宫坐标:10°46′37″N 106°41′43″E / 10.77694°N 106.69528°E / 10.77694; 106.69528统一宫(越南语:Dinh Thống Nhất/.mw-parser-output .han-nom{font-family:"Nom Na Ton
  • 1985年10月逝世人物列表1985年10月逝世人物列表,是用于汇总1985年10月期间逝世人物的列表。
  • 罗伯特·塞钦斯·武德沃斯罗伯特·塞钦斯·武德沃斯(Robert Sessions Woodworth,1869年10月17日-1962年7月4日)是20世纪上半叶的美国心理学家。毕业于哈佛大学和哥伦比亚大学。他的教科书《心理学:精神生
  • 光辉古貉藻光辉古貉藻(学名:)为灭绝的食肉植物种类。本种被认为是貉藻属物种的演化祖先。
  • 钉扎点对晶体材料而言,当应力较小时,位错能够在晶格间移动。位错的这种运动引发了材料的塑性形变。而钉扎点的存在阻碍了位错的运动,故需要一个较大的应力才能使位错克服阻碍。材料因
  • 以星期四开始的平年这是一个以星期四开始的平年的清单(主日字母 D),例如格里历的2009年或儒略历的1915年。这是唯一的出现3次13日星期五的平年。(平年有365天——与闰年相对。) 这种年份在IS