线性非时变系统理论

✍ dations ◷ 2025-04-02 09:57:48 #数字信号处理,电子工程,控制理论,信号处理

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振频谱学、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。

顾名思义,线性非时变系统必须同时满足线性和非时变性:

输入 c ω x ω ( t ) d ω {\displaystyle \int _{-\infty }^{\infty }c_{\omega }\,x_{\omega }(t)\,\operatorname {d} \omega } 观点。相同的结果对于离散时间线性移位不变系统也成立,其中信号为离散时间取样信号,并且卷积对序列定义。

同理,任何LTI系统的特征可由的系统传递函数刻画,它是系统冲激响应的拉普拉斯变换(在离散时间系统的情况下为Z变换)。由于这些变换的性质,该系统在频域的输出是传递函数与输入的变换的乘积。换句话说,时域中的卷积相当于频域中的乘法。

对于所有的LTI系统中,本征函数和所用变换的基函数,是复指数函数。这即是说,如果一个系统的输入是复波形 A e s t {\displaystyle Ae^{st}} 是本征函数而 λ {\displaystyle \lambda } 有关。

因此,系统的响应是一个缩放的输入。特别地,对任意I A , s C {\displaystyle A,s\in \mathbb {C} } 、或。

拉普拉斯变换通常用于单边信号的背景下,即小于某个值时信号的所有值为零。通常,“起始时间”设置为零,为方便起见,不失一般性,变换都从零到无穷积分(上述变换的下限为负无穷的积分称作双边拉普拉斯变换)。

傅里叶变换是用来分析系统处理无穷限信号的,如调制的正弦信号,即使它不能直接应用在非平方可积(英语:square integrable)的输入与输出信号上。拉普拉斯变换实际在这些信号初始时间之前全为零的信号可以直接使用,即便他们不是平方可积的,比如平稳系统。傅里叶变换通常通过维纳-辛钦定理用在无穷信号光谱上,即使在信号的傅里叶变换不存在的时候。

由于这两种变换的卷积性质,在变换存在的条件下,能够给出系统输出的卷积可以转换为变换域的乘积

计算变换、乘积和反变换不仅比原始的卷积容易,而且还能从系统响应了解系统的行为。可以观察系统函数 |()| 的模来看出输入 exp ( s t ) {\displaystyle \exp({st})} 这个系统或被此系统或(不通)。

因果性和稳定性是描述系统的两个重要性质。如果独立变量是时间,那么因果性是必须的,但并不是所有系统的独立变量都是时间。例如,一个处理静止图像的系统不需要具备因果性。非因果系统可以建立,并可以在许多情况下发挥作用。即使是非实数系统也可以构建,并且在很多场合也是非常有用的。

如果系统输出只与当前以及过去的输入有关,那么该系统就是因果系统。因果性的充分必要条件是

其中 h ( t ) {\displaystyle h(t)} 是采样周期。为了保证离散信号能够忠实地表示输入信号,非常重要的一点就是需要限制输入信号的频率范围。根据采样定理,离散时间信号所包括的最大频率范围是 1 / ( 2 T ) {\displaystyle 1/(2T)} 输入信号的响应。再次应用 δ {\displaystyle \delta } 的过滤特性,我们将输入信号写成δ的累加和:

输入经过系统变换,

系统的所有信息都包含在冲激响应 h {\displaystyle h} 中。

一个简单的线性时不变算子的实例是延时算子 D { x } := x {\displaystyle D\{x\}:=x}

导数取Z变换,就变成一个简单的与Z相乘:

差分的Z变幻如此简单也在一定程度上表明了Z变换的用途。

另外一个简单的线性时不变算子是平均算子

由于和是线性的所以它也是线性的:

它也是时不变的:

因果性和稳定性是系统的重要特性。与连续时间系统不同,我们可以实现非因果的离散时间系统。通过在系统中加入延时就很容易将非因果有限冲激响应系统变成因果系统。甚至可以构建非因果的无限冲激响应系统(参见Vaidyanathan and Chen, 1995)。我们也可以构建不稳定的系统,这种系统在很多场合都很有用,甚至也可以构建在很多情况下非常有用的non-real系统。

如果系统的输出只与当前以及过去的输入有关,那么系统就是因果系统。因果性的必要且充分条件是

其中 h {\displaystyle h} 是冲激响应。由于逆变换不是唯一的,所以通常很难从Z变换确定系统的因果性。如果收敛域确定,系统的因果性也就随之确定。

如果离散系统每个有界的输入,输出都是有界的那么系统就是有界输入输出稳定(BIBO稳定)。用数学方法表示就是

并且

(也就是说 x {\displaystyle x} y {\displaystyle y} 的最大绝对值都是有限的),那么系统就是稳定的。必要且充分条件就是冲激响应 h {\displaystyle h} 满足

在频域中,收敛域必须包含单位圆 | z | = 1 {\displaystyle |z|=1}

相关

  • 脱水脱水(英语:dehydration)是一种化工单元过程,是水合的逆过程。把水分子从物质分子中解脱出来,对于单纯的水合物来说,比较容易,一般只要加热使水脱离蒸发就可以了,如将碳酸钠水合物晶
  • ACTH/Corticotropin促肾上腺皮质激素(英语:adrenocorticotropic hormone, ACTH)——或简称促皮质素(corticotropin)——是一种多肽激素,生产并分泌于脑垂体,是下丘脑-脑垂体-肾上腺皮质轴(hypothalamic
  • 康考迪亚大学协和大学(或音译称“肯考迪亚大学”等)是加拿大魁北克省蒙特利尔市一所大型综合性大学。也是该市第二所以英语为主要教学语言的大学。在2011至2012学年间,协和大学有为数达4595
  • 冷藏制冷,通常指根据热力学第一、第二定理在机械能、热能或其它能源驱动下,从低于环境的物体中吸热,并转移至环境介质的热力过程。制冷已经广泛应用于空调、湿度控制、食品冷藏、饮
  • 李祯盛李祯盛(?-),中国人民解放军少将,中国文学艺术界联合会原副主席,中央军事委员会政治工作部宣传局原局长,现任中国人民解放军北部战区陆军纪委书记。
  • 小核核糖核酸小核RNA(英语:small nuclear RNA,常见缩写为snRNA,也见译为核内小RNA),是含有100到300碱基的RNA。它参与真核生物细胞核中RNA的加工。snRNA和许多蛋白质结合在一起成为小胞核核糖
  • 禅定禅定(梵语:Dhyāna-samādhi)或禅(英语:Zen,来自日语“褝”;亦依汉语译为Chan,特指中国禅),汉传佛教术语,利用梵汉合体而创造出的名词,又叫正定、止观,是佛教的最高功德。修行禅定的行为,
  • 德士龙德士龙(英语:DEXRON)是通用汽车所制定的自动变速箱油标准的商标。该商标已经被通用汽车注册,一些外围公司经授权后可以以其他品牌生产。GM一直在更新它的标准,新款油料基本可以向
  • 汲冢书汲冢书,是中国西晋初年(280年左右),在汲郡(今河南省卫辉市附近)出土的一批竹简的总称。当时,汲郡的盗墓客“不准”(不,姓氏,音biāo)盗掘一座战国时期的魏国古墓(魏襄王或魏安釐王),发现了
  • 韩国中部大学韩国中部大学(韩文:중부대학교,英文:Joongbu University),是韩国一所4年制的私立大学,建立于1984年2月,是一所年轻的现代化大学,设有忠清南道锦山郡忠清校区及首尔高阳校区。目前学校