随机事件

✍ dations ◷ 2025-04-02 08:36:48 #随机事件
在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {displaystyle (Sigma ,{mathcal {F}},mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {displaystyle Sigma } 、事件集合 F {displaystyle {mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {displaystyle mathbb {P} } 。其中的事件集合 F {displaystyle {mathcal {F}}} 是一个σ-代数,而取概率的运算 P {displaystyle mathbb {P} } 需要满足概率的加法公理(σ-Additive):这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , ⋯ {displaystyle q_{1},q_{2},cdots } 。对于每一个0到1之间的实数 a {displaystyle a} ,小明将 a + q 1 , a + q 2 , ⋯ {displaystyle a+q_{1},a+q_{2},cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {displaystyle S_{a}} 。构造多个这样的集合 S a {displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {displaystyle S_{a}} 写成:再令:那么所得到的事件(也就是集合) T 1 , T 2 , ⋯ {displaystyle T_{1},T_{2},cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {displaystyle mathbb {P} (T_{n})} 都是一样的。 如果 P ( T n ) > 0 {displaystyle mathbb {P} (T_{n})>0} ,那么根据加法原则,而如果 P ( T n ) = 0 {displaystyle mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。两个随机事件之间可以有各种各样的关系。如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。在概率运算时,还有:

相关

  • 药品人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学药品指一切用作诊断、治疗、预防疾病
  • 革兰氏阴性杆菌革兰氏阴性菌(英语:Gram-negative bacteria)泛指革兰氏染色反应呈红色的细菌。在革兰氏染色实验中,首先添加了结晶紫,再添入另一种复染染料(通常使用番红),从而将所有的革兰氏阴性菌
  • 化学性质化学性质是物质在化学反应中表现出来的特征及性质。
  • 红花红花(学名:Carthamus tinctorius)属菊科植物。红花又称红蓝、黄蓝,菊科红花属。这种花不宜与番红花相混淆。红花古称“烟支”、“燕支”、“胭脂”等,原产于西域。匈奴人认为妻妾
  • FeFsub3/sub氟化铁,又称三氟化铁,氟化铁(Ⅲ),是氟和铁的化合物,化学式是FeF3。用于陶瓷,在推进剂中用作燃速催化剂。氟化铁是很难制造出来的,即是在自然界中很少存在,氟化铁在1000℃升华,微溶于冷
  • 野餐露营是一种休闲活动,通常露营者携带帐篷,离开城市在野外扎营,度过一个或者多个夜晚。露营通常和其他活动联系,如徒步、钓鱼或者游泳等。基本可以分为四种形式,第一是常规露营,第二
  • 国际度量衡局国际计量局(法语:Bureau international des poids et mesures,缩写:BIPM)是依1875年订定的米制公约,为维护国际单位制(SI制)所设立的3个组织中的1个。其宗旨为“确保国际度量衡标准
  • 双子叶植物纲双子叶植物(Dicotyledons,简称dicots),又称双子叶植物纲(Dicotyledoneae)、木兰纲(Magnoliopsida),是指一般其种子有两个子叶之开花植物的总称,约有199350个物种。非双子叶植物的开花
  • 不合作运动不合作运动(英语:Non-cooperation movement),又称非暴力不合作运动,是1920—1922年和1930—1934年发生于英属印度的全国范围的非暴力不合作运动,发动和领导者是律师出身的印度国民
  • 铁硫世界学说铁硫世界学说(英语:Iron–sulfur world theory),是由在慕尼黑的有化学学位的专利律师根特·维奇特萧瑟(德语:Günter Wächtershäuser)从1988年到1992年期间发表一系列文章提出的