宇宙学视界

✍ dations ◷ 2025-05-17 00:41:46 #宇宙学视界
宇宙学视界是指能够接收信息的可测量距离。这种对观测的限制来源于广义相对论,和宇宙学标准模型。宇宙学视界界定了我们可观测宇宙的范围。本文将解释宇宙学上的几种不同的视界的定义。本文中所用的距离单位是千秒差距(kpc)或百万秒差距(Mpc)。粒子视界是指在某个时刻 t = t 0 {displaystyle t=t_{0}} 的观察者能够接收到其他地方的光信号的边界。粒子视界代表我们能够从过去获取信息的最远距离,通常这也是可观测宇宙的大小。其对应的视界半径可表示为:d H = a ( t 0 ) ∫ 0 t 0 c a ( t ) − 1 d t {displaystyle d_{H}=a(t_{0})int _{0}^{t_{0}}ca(t)^{-1}mathrm {d} t} ,其中 a ( t ) {displaystyle a(t)} 对应于FRW度规中的尺度因子。事件视界跟粒子视界有所不同,粒子视界是指在某个指定时刻远处光子能够到达观察者的最远同移距离,而事件视界指的是某个时刻发射的光子在未来所能传播的最大同移距离,这里所说的未来时间由时空几何本身决定,值得一提的是它未必是正无穷。一般的,时刻t发出的光子对应的固有距离可表示为:d e ( t ) = a ( t ) ∫ t t m a x c a ( t ′ ) − 1 d t ′ {displaystyle d_{e}(t)=a(t)int _{t}^{t_{max}}ca(t')^{-1}mathrm {d} t'} ,其中 t m a x {displaystyle t_{max}} 是宇宙坐标系时间轴的最大值,当宇宙一直膨胀时,它是正无穷。在宇宙学标准模型中, d e ( t 0 ) < ∞ {displaystyle d_{e}(t_{0})<infty } 。所谓的哈勃视界指的是如果宇宙不膨胀的话,一个光子可以传播的距离,这个距离是 χ = c t {displaystyle chi =ct} , 其中t是从大爆炸开始的回视时间(宇宙年龄),根据弗里德曼方程,t = ∫ 0 a H 0 Ω γ a − 2 + Ω m a − 1 + Ω Λ a 2 d a {displaystyle t=int _{0}^{a}{frac {}{H_{0}{sqrt {Omega _{gamma }a^{-2}+Omega _{m}a^{-1}+Omega _{Lambda }a^{2}}}}}mathrm {d} a}其中 H 0 {displaystyle H_{0}} 是哈勃常数, Ω γ {displaystyle Omega _{gamma }} , Ω m {displaystyle Omega _{m}} , Ω Λ {displaystyle Omega _{Lambda }} 是密度参数,分别对应辐射,物质,暗能量的相对能量密度。 今天,大概的,χ 0 ≈ c H 0 {displaystyle chi _{0}approx {frac {c}{H_{0}}}} ,算得哈勃视界半径约为4.2Gpc。注意,这个尺度不是真正物理的尺度,但是由于历史的原因,通常我们用这个名词表示宇宙的半径。在一个正在加速膨胀的宇宙中,事件在未来无穷远( t → ∞ {displaystyle tto infty } )将不可能被观测到,这是因为在比如指数膨胀的德西特时空中,事件信号将会被红移到无线长的波长,直至不可探测到。若以今天的固有距离来衡量,这给出了可以接收信号的最远距离的一个上限。更确切的说,选定参考系中同一时刻不同空间位置发生的某些事件将永远不可能被我们观测到,即使我们可以观测到过去同一空间位置的事件的信号。也就是说,我们可以一直接收到此地事件发出的信号,但是无论多长时间,我们也不可能接受到那个空间位置事件发生的信号。实际上,从那个空间位置发出的信号的能量将会越来越弱,频率也会越来越低,也就是说不可观测到。在一个暗能量主导的加速膨胀的宇宙中,尺度因子指数增长,在Kapteyn宇宙中被引力所束缚的银河系最终也将变得不可观测。

相关

  • 尚柏朗过滤器尚柏朗过滤器,或称巴斯德-尚柏朗过滤器,是由查理斯·尚柏朗于1884年发明的陶瓷制滤水器。其原理和伯克菲尔德过滤器(英语:Berkefeld filter)类似。该过滤器由陶瓷制的内外管构成
  • 圣卢西亚面积以下资讯是以2018年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018年估计圣
  • 盎格鲁美洲盎格鲁美洲(英语:Anglo-America),又称英语美洲,用作描述以英语为主要语言,或者与英格兰或英伦三岛在历史、语言或文化上有密切关系的美洲地区,也可以指英语世界的美洲部分,与操罗曼
  • 氮芥类氮芥类物质(英语:Nitrogen mustards)是一类结构与芥子气相似的细胞毒化疗药物,属于非选择性烷化剂的一种。虽然主要应用于临床,早期的氮芥类物质也能像芥子气一样用作化学武器。
  • 调味品调味料或调味品是指加入其他食物中,用来改善味道的食品成分。如果细分,调味料可以分为作料和佐料。作料指的是在烹调食物之前和过程中加入的调味料,比如腌制食物的料酒、炒菜时
  • 辅酶Q–细胞色素c还原酶结构 / ECOD辅酶Q: 细胞色素c - 还原酶(英语:coenzyme Q : cytochrome c – oxidoreductase,),有时被称为细胞色素bc1复合体,又有时被称为复合体III(第三复合体,complex III),是电子
  • 枯山水枯山水(日语:枯山水/かれさんすい / かれせんずい Karesansui / Karesenzui */?)是日本式园林的一种,但也是日本画的一种形式。一般是指由细沙碎石铺地,再加上一些叠放有致的石
  • 何尊何尊,西周早期的一件青铜酒器,是一位名叫“何”的贵族用于祭祀的尊,作于周成王五年,是西周最早的有明确纪年的青铜器。1963年,出土于陕西省宝鸡市贾村。何尊是中华人民共和国国家
  • 维尔纳阿尔弗雷德·维尔纳(德语:Alfred Werner,1866年12月12日-1919年11月15日),是一位瑞士化学家。曾经是苏黎世联邦理工学院的学生,也是苏黎世大学的教授。1913年,以提出过渡金属复合物
  • 张宗烨张宗烨(1935年1月29日-),出生于北京,祖籍浙江杭州,核理论物理学家、中国科学院院士,著名哲学家张东荪之女,物理学家张宗燧之妹。张宗烨于1956年毕业于北京大学物理系,此后先后任职于