结构归纳法

✍ dations ◷ 2025-11-08 00:07:15 #算法,数据结构,数学推理,良基性

结构归纳法是应用在数理逻辑、计算机科学、图论和一些其他数学领域的证明方法(比如Los's定理的证明),是一般化的数学归纳法 (数学归纳法仅仅定义在自然数上)。

其通常用来证明一些命题 (), 是递归定义结构(例如树和表)的一种。良基偏序是定义在这种结构上的。结构归纳法的证明是由证明命题对于所有的极小结构成立,以及如果他在一个结构 的基础结构中成立,那么其一定也在整个 中成立这些组成。比如,如果一个结构是个这样一个表,含有偏序 '<',只要表 在表 的尾部,那么 < 。在这样的排序中,空的 list 是唯一的最小元素。结构归纳法中,一些命题 () 的证明由两个部分组成:

考虑一下下面表的性质:

    length (L ++ M) = length L + length M          

这里的++ 表示表的加法运算

为了证明这个结论,我们需要定义一下length和加法运算:

    length  = 0                  length (h:t) = 1 + length t   
     ++ list = list               (h:t) ++ list = h: (t ++ list) 

这里的()代表头部是和尾部是的表。我们定义命题()指在当是时,在整个表中EQ成立。因此,我们应该证明在表中()成立。下面,我们将用结构归纳法证明。

首先我们应该证明成立;也就是,是空表(list )时EQ在整个表中成立。想一想EQ:

         length (L ++ M) = length L     + length M         length (++ M) = length     + length M         length       M = 0       + length M  (根据 加法定则1)         length       M = length     + length M  (根据 长度定则1)

因此这个定理的第一部分也就证明了,即当是时,EQ在整个中成立, 因为等式的两边相等。

现在我们需要证明,当是一个非空的表时,()成立。因为非空, 所以他一定会有首部元素, 设为, 和尾部元素,设为,因此我们可以将非空的表表示为 ()。归纳假设为当是时,EQ对于所有的值都成立:

    length (xs ++ M) = length xs + length M        (假设)

我们想要说明如果这样成立,那么当是尾部是的表时,EQ对于所有的值都成立。接着进行演算:

    length (L ++ M) = length L      + length M       length ((x:xs)++ M) = length (x:xs) + length M    length (x:(xs ++ M)) = length (x:xs) + length M   (根据 加法定则2)    1 + length (xs ++ M) = length (x:xs) + length M   (根据 长度定则2)    1 + length (xs ++ M) = 1 + length xs + length M   (根据 长度定则2)        length (xs ++ M) =     length xs + length M

结果正是我们的归纳假设, 我们成功了。

和标准的数学归纳法等价于良序原理一样, 结构归纳法也等价于良序原理。如果某种整个结构的集容纳一个良基偏序, 那么每个非空子集一定都含有最小元素。(其实这也是良基的定义) 这个辅助定理用这种形式定义的意义在于他能够让我们推论出,如果这里有某个我们需要证明的定理的反例,那么就一定存在一个极小的反例。如果我们能够指出他的存在,也就意味着有一个更小的反例, 我们得到一个矛盾了(因为最小的反例不是最小的),因此反例的集一定是空集。

这种论证的一个实例:考虑一下所有二叉树的集合。我们将证明在完全二叉树中叶子的数目比内部节点的数目多一个。假设这里有一个反例;那么就一定存在含有极小可能数目的内部节点的一个树。这个反例有个内部节点和个叶子,这里有+1 ≠ 。而且要是非平凡的,因为平凡的树 = 0而且 = 1因此不具有反例的条件。因此至少含有其亲代交点是一个内部节点的一个叶子。从树上删掉这个叶子和他的父辈, 将被删叶子的节点的兄弟节点提升到被删叶子从前父辈节点所占有的位置。这样做将和减少了1,因此新的树也有+1 ≠ ,这样就得到了一个更小的反例。但是在归纳假设中,已经是最小的反例了;因此,开始的或许有些反例的猜想被证明了是错误的。 '更小'的偏序意味着只要比的节点少那么 < 。

结构递归和结构归纳法的关系就象普通的递归和普通的数学归纳法一样。

相关

  • 被动运输被动运输(英文:Passive transport)指的是生物化学物质的运动或其他原子或分子穿过细胞膜。不像主动运输,该过程不需要化学能,这是因为顺浓度梯度的跨膜转运总是伴随着系统熵增
  • 梅利利亚梅利利亚(西班牙语:Melilla,发音:)是西班牙两个自治市之一(另外一个是休达),为西班牙位于北非的海外属地,它位于地中海沿岸和马格里布的最北部。在1995年3月14日自治法出台之前,休达属
  • 方便记忆记忆术(英语:Mnemonic)又译助忆,是一种辅助记忆的方法,例如诗、韵文或是图像。人们在日常生活中经常使用缩写、口诀来记忆一些复杂的内容。例如,学生在学习眼球的解剖结构的时候会
  • 德国表现主义德国表现主义(英语:German Expressionism)是指一些互相关联的德国艺术运动,从一战前开始,在1920年代的柏林到达顶峰。这些运动属于北欧与中欧表现主义运动的一部分,涉及的领域包括
  • 鲁道夫·狄塞尔鲁道夫·克里斯琴·卡尔·狄塞尔(Rudolf Christian Karl Diesel,1858年3月18日-1913年9月30日),德国工程师,柴油发动机的发明者。他在1892年提出压缩点火式内燃机的原始设计,经过不
  • Zinc3d10 4s22, 8, 18, 2蒸气压第一:906.4 kJ·mol−1 第二:1733.3 kJ·mol−1 第三:3833 kJ·mol−1 (主条目:锌的同位素锌(英语:zinc)是化学元素,化学符号是Zn,原子序数是30,相对原子
  • 英国的亨丽埃塔公主亨利埃塔·安妮·斯图亚特(英语:Henrietta Anne Stuart,1644年6月16日-1670年6月30日),又称英格兰的亨利埃塔公主(英语:Princess Henrietta of England),是英国国王查理一世的女儿,法国
  • 葛城一葛城一,别名くずしろ,日本女性漫画家。岩手县出身。20歳的时候以短篇“B.B.C.”(葛城一名义)入围2007年后期第61回《小学馆新人漫画大奖(日语:小学館新人コミック大賞)》少年部门佳
  • 议会迷议会迷(英语:Parliamentary cretinism)是卡尔·马克思创造的贬义术语,最早见于他1852年发表的《路易·波拿巴的雾月十八日》。 该词被用于描述一种认为社会主义社会可以通过和平
  • 俄语地理分布俄语地理分布,俄语遍及于俄罗斯领土,1917年俄罗斯帝国(帝俄)灭亡,苏联成立,部分前帝俄属地,例如波兰、芬兰、爱沙尼亚、拉脱维亚、立陶宛及卡尔斯州(今属土耳其)都展开了去俄语化运动