剪切小波

✍ dations ◷ 2025-04-26 13:10:07 #小波分析

在应用数学的分析方面,剪切小波是一个多尺度的架构,且在多变量问题中能高效率编码有各向异性的特点。起初,为了分析及稀疏近似多维方程式 f L 2 ( R 2 ) {\displaystyle f\in L^{2}(\mathbb {R} ^{2})}

为一个改变分辨率的方法。

为一个改变方向的方法。最后再用平移去改变位置。相较于曲小波,剪切小波利用剪切的方法取代旋转的方法,其优点在于如果 s Z {\displaystyle s\in \mathbb {Z} } ,像是 S s Z 2 Z 2 {\displaystyle S_{s}\mathbb {Z} ^{2}\subseteq \mathbb {Z} ^{2}} 时,剪切运算子 S s {\displaystyle S_{s}} 会让整数格不改变。

给定一个 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} ,由 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 产生的连续剪切小波系统被定义成:

其对应的连续剪切小波转换:

离散的剪切小波系统可以直接从 SH c o n t ( ψ ) {\displaystyle \operatorname {SH} _{\mathrm {cont} }(\psi )} 并借由将参数集合 R > 0 × R × R 2 . {\displaystyle \mathbb {R} _{>0}\times \mathbb {R} \times \mathbb {R} ^{2}.} 离散化导出。有很多方法可以实现,但最常见是由下式导出:

从这个式子,与剪切运算子有关的离散剪切小波系统被定义为:

其相关的离散剪切小波转换被定义为:

ψ 1 L 2 ( R ) {\displaystyle \psi _{1}\in L^{2}(\mathbb {R} )} 为一个满足离散卡尔德龙条件的函数,像是:

ψ ^ 1 C ( R ) {\displaystyle {\hat {\psi }}_{1}\in C^{\infty }(\mathbb {R} )} supp ψ ^ 1 {\displaystyle \operatorname {supp} {\hat {\psi }}_{1}\subseteq \cup } ,其中 ψ ^ 1 {\displaystyle {\hat {\psi }}_{1}} ψ 1 {\displaystyle \psi _{1}} 的 傅立叶变换。例如,可以选择 ψ 1 {\displaystyle \psi _{1}} 为一个梅尔小波。此外,设 ψ 2 L 2 ( R ) {\displaystyle \psi _{2}\in L^{2}(\mathbb {R} )} 而且 ψ ^ 2 C ( R ) , {\displaystyle {\hat {\psi }}_{2}\in C^{\infty }(\mathbb {R} ),} supp ψ ^ 2 {\displaystyle \operatorname {supp} {\hat {\psi }}_{2}\subseteq }

通常会选择一个冲击函数作为 ψ ^ 2 {\displaystyle {\hat {\psi }}_{2}} ,然后 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 就会是:

这被称作一个典型的剪切小波。其对应的离散剪切小波系统 SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} L 2 ( R 2 ) {\displaystyle L^{2}(\mathbb {R} ^{2})} 空间中构成一个紧框架,且其中包含频带限制的函数。

另外一个例子是紧支撑的剪切小波系统,其中要选定紧支撑函数 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} 形成一个 L 2 ( R 2 ) {\displaystyle L^{2}(\mathbb {R} ^{2})} 的框架。既然这样,在 SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} 中所有剪切小波的元素是紧支撑且相较于频带限制的典型剪切小波有优越的空间定位。虽然紧支撑的剪切小波系统没有形成一个Parseval框架,但任意一个 f L 2 ( R 2 ) {\displaystyle f\in L^{2}(\mathbb {R} ^{2})} 的函数可以被写成剪切小波的扩张。

上述所定义的剪切小波有其缺陷,那就是剪切小波元素的方向性偏差与大的剪切参数有关联。在典型剪切小波的频率拼接(在#范例中的图可见)中可以看到这个影响,当剪切参数 s {\displaystyle s} 趋近无限大时,剪切小波的频率支撑越来越贴近 ξ 2 {\displaystyle \xi _{2}} 轴,这在分析傅立叶变换集中分布在 ξ 2 {\displaystyle \xi _{2}} 轴的函数时造成很严重的问题。

为了解决这个问题,频域被分成一个低频部分和两个锥形部分(如图所示):

这个自适应性剪切小波系统是由三个部分组成,每个部分都对应到这些频域之一,这个系统是由三个函数 ϕ , ψ , ψ ~ L 2 ( R 2 ) {\displaystyle \phi ,\psi ,{\tilde {\psi }}\in L^{2}(\mathbb {R} ^{2})} 和晶格取样因子 c = ( c 1 , c 2 ) ( R > 0 ) 2 : {\displaystyle c=(c_{1},c_{2})\in (\mathbb {R} _{>0})^{2}:} 所产生,

其中:

式子中的一些变数定义如下;

系统 Ψ ( ψ ) {\displaystyle \Psi (\psi )} Ψ ~ ( ψ ~ ) {\displaystyle {\tilde {\Psi }}({\tilde {\psi }})} ru 基本上不同点在于 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 的角色互换。因此,它们分别对应到锥形区域 C h {\displaystyle {\mathcal {C}}_{\mathrm {h} }} C v {\displaystyle {\mathcal {C}}_{\mathrm {v} }} ,最后,缩放函数 ϕ {\displaystyle \phi } 则对应到低频区域 R {\displaystyle {\mathcal {R}}}



相关

  • 2018年世界杯足球赛2018年国际足联世界杯为第21届国际足联世界杯的赛事,于2018年6月14日至7月15日在俄罗斯举行,共进行64场赛事。国际足联将2018年与2022年世界杯申办程序一并进行,2018年世界杯的
  • 金属晶体金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由于金属的电子倾向脱离,因此具有良好的导
  • 新加坡猫新加坡猫又被称为狮城猫,Singapura是马来语对新加坡的称呼,这是体型最小的猫品种。有的体重甚至只有两公斤左右。又名阴沟猫、下水道猫,因早期这种猫在原产地新加坡并不受欢迎,
  • 李昑朝鲜英祖(朝鲜语:조선 영조/朝鮮英祖 Joseon Yeongjo;1694年10月31日-1776年4月22日),名李昑(朝鲜语:이금/李昑 Yi Geum),幼名禧寿,字光叔,号养性轩。是朝鲜王朝的第21代君主,在位时期为1
  • 大玉儿传奇《大玉儿传奇》(英文:The Legend of Xiaozhuang) 为一部清装古装电视连续剧,于2014年7月开机,同年10月杀青。科尔沁格格大玉儿(景甜饰演)梦想着和心上人在草原上过鹰般自由的生活,可
  • 周鹤洋周鹤洋(1976年6月18日-),中国河南省洛阳市人,围棋职业九段棋手。
  • 美国参议院临时议长 美国众议院议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the
  • 国际足联世界杯主办国国际足联世界杯主办地点是由国际足球联合会历届举办的会议决定。现时除了2002年、2010年外,其余的世界杯都是欧洲和美洲主办。参选国家:投票结果:参选国家:投票结果:参选国家
  • 约翰·基特默约翰·基特默(英语:John Kittmer;1967年7月6日-),是一名英国外交官,现任英属印度洋领地专员及英属南极领地专员。基特默在西萨塞克斯郡库克菲尔德(英语:Cuckfield)出生,曾于1988年在剑
  • 天津股权交易所天津股权交易所,简称天交所,2008年9月在天津市滨海新区注册成立,是天津市人民政府依据国务院关于"要为在天津滨海新区设立全国性非上市公众公司股权交易市场创造条件"的要求批