剪切小波

✍ dations ◷ 2024-12-23 13:42:32 #小波分析

在应用数学的分析方面,剪切小波是一个多尺度的架构,且在多变量问题中能高效率编码有各向异性的特点。起初,为了分析及稀疏近似多维方程式 f L 2 ( R 2 ) {\displaystyle f\in L^{2}(\mathbb {R} ^{2})}

为一个改变分辨率的方法。

为一个改变方向的方法。最后再用平移去改变位置。相较于曲小波,剪切小波利用剪切的方法取代旋转的方法,其优点在于如果 s Z {\displaystyle s\in \mathbb {Z} } ,像是 S s Z 2 Z 2 {\displaystyle S_{s}\mathbb {Z} ^{2}\subseteq \mathbb {Z} ^{2}} 时,剪切运算子 S s {\displaystyle S_{s}} 会让整数格不改变。

给定一个 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} ,由 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 产生的连续剪切小波系统被定义成:

其对应的连续剪切小波转换:

离散的剪切小波系统可以直接从 SH c o n t ( ψ ) {\displaystyle \operatorname {SH} _{\mathrm {cont} }(\psi )} 并借由将参数集合 R > 0 × R × R 2 . {\displaystyle \mathbb {R} _{>0}\times \mathbb {R} \times \mathbb {R} ^{2}.} 离散化导出。有很多方法可以实现,但最常见是由下式导出:

从这个式子,与剪切运算子有关的离散剪切小波系统被定义为:

其相关的离散剪切小波转换被定义为:

ψ 1 L 2 ( R ) {\displaystyle \psi _{1}\in L^{2}(\mathbb {R} )} 为一个满足离散卡尔德龙条件的函数,像是:

ψ ^ 1 C ( R ) {\displaystyle {\hat {\psi }}_{1}\in C^{\infty }(\mathbb {R} )} supp ψ ^ 1 {\displaystyle \operatorname {supp} {\hat {\psi }}_{1}\subseteq \cup } ,其中 ψ ^ 1 {\displaystyle {\hat {\psi }}_{1}} ψ 1 {\displaystyle \psi _{1}} 的 傅立叶变换。例如,可以选择 ψ 1 {\displaystyle \psi _{1}} 为一个梅尔小波。此外,设 ψ 2 L 2 ( R ) {\displaystyle \psi _{2}\in L^{2}(\mathbb {R} )} 而且 ψ ^ 2 C ( R ) , {\displaystyle {\hat {\psi }}_{2}\in C^{\infty }(\mathbb {R} ),} supp ψ ^ 2 {\displaystyle \operatorname {supp} {\hat {\psi }}_{2}\subseteq }

通常会选择一个冲击函数作为 ψ ^ 2 {\displaystyle {\hat {\psi }}_{2}} ,然后 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 就会是:

这被称作一个典型的剪切小波。其对应的离散剪切小波系统 SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} L 2 ( R 2 ) {\displaystyle L^{2}(\mathbb {R} ^{2})} 空间中构成一个紧框架,且其中包含频带限制的函数。

另外一个例子是紧支撑的剪切小波系统,其中要选定紧支撑函数 ψ L 2 ( R 2 ) {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} 形成一个 L 2 ( R 2 ) {\displaystyle L^{2}(\mathbb {R} ^{2})} 的框架。既然这样,在 SH ( ψ ) {\displaystyle \operatorname {SH} (\psi )} 中所有剪切小波的元素是紧支撑且相较于频带限制的典型剪切小波有优越的空间定位。虽然紧支撑的剪切小波系统没有形成一个Parseval框架,但任意一个 f L 2 ( R 2 ) {\displaystyle f\in L^{2}(\mathbb {R} ^{2})} 的函数可以被写成剪切小波的扩张。

上述所定义的剪切小波有其缺陷,那就是剪切小波元素的方向性偏差与大的剪切参数有关联。在典型剪切小波的频率拼接(在#范例中的图可见)中可以看到这个影响,当剪切参数 s {\displaystyle s} 趋近无限大时,剪切小波的频率支撑越来越贴近 ξ 2 {\displaystyle \xi _{2}} 轴,这在分析傅立叶变换集中分布在 ξ 2 {\displaystyle \xi _{2}} 轴的函数时造成很严重的问题。

为了解决这个问题,频域被分成一个低频部分和两个锥形部分(如图所示):

这个自适应性剪切小波系统是由三个部分组成,每个部分都对应到这些频域之一,这个系统是由三个函数 ϕ , ψ , ψ ~ L 2 ( R 2 ) {\displaystyle \phi ,\psi ,{\tilde {\psi }}\in L^{2}(\mathbb {R} ^{2})} 和晶格取样因子 c = ( c 1 , c 2 ) ( R > 0 ) 2 : {\displaystyle c=(c_{1},c_{2})\in (\mathbb {R} _{>0})^{2}:} 所产生,

其中:

式子中的一些变数定义如下;

系统 Ψ ( ψ ) {\displaystyle \Psi (\psi )} Ψ ~ ( ψ ~ ) {\displaystyle {\tilde {\Psi }}({\tilde {\psi }})} ru 基本上不同点在于 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 的角色互换。因此,它们分别对应到锥形区域 C h {\displaystyle {\mathcal {C}}_{\mathrm {h} }} C v {\displaystyle {\mathcal {C}}_{\mathrm {v} }} ,最后,缩放函数 ϕ {\displaystyle \phi } 则对应到低频区域 R {\displaystyle {\mathcal {R}}}



相关

  • Lac操作子乳糖操纵子是一个在大肠杆菌及其他肠道菌科细菌内负责乳糖的运输及代谢的操纵子。它包含了三个相连的结构基因,启动子、终止子及操纵基因。乳糖操纵子受多种因素所调控,包括葡
  • 行政机关行政机关,又称行政机构、行政部门,其工作是对组织进行日常的管理并施行法律政策等相关活动,是三权分立中的其中一部分。广义上,行政定义为负责国家政策的执行的政府机构。狭义上
  • 郑张尚芳郑张尚芳(1933年8月9日-2018年5月19日),原名郑祥芳,曾用笔名尚芳,浙江温州人,中国语言学家,主要从事汉语音韵学、汉藏语比较研究及上古汉语构拟。他是郑张-潘体系建立者之一,汉语古音
  • 包朗阿包朗阿(又译包郎阿,约1525年—约1582年)清兴祖福满之子,清景祖觉昌安之五弟,清太祖努尔哈赤呼之为“五祖”。清景祖觉昌安有兄弟六人,他们分城而居,包朗阿居尼麻喇城。努尔哈赤刚起
  • 立体几何数学上,立体几何(英语:solid geometry,德语:Stereometrie,希腊语:Στερεομετρία)是三维欧几里得空间的几何的传统名称。实践上这大致上就是我们生活的空间。一般作为平面
  • 东岳殿台南东岳殿,是位于台南市中西区的东岳庙,主祀东岳仁圣大帝,俗称岳帝庙,或作岳帝庙,创建于明郑时期,为台湾最早奉祀东岳仁圣大帝之首庙,亦为昔日台湾府城七寺八庙、府城八协境庙宇之
  • 预士大专程度义务役预备军官士官考试,简称“预官预士考试”,是中华民国政府依照军官士官服役条例所实行的服役方式,主管机关为国防部,开放予合乎标准且尚未服义务役的男子,录取者受训
  • 蟹黄汤包蟹黄汤包为江苏传统美食,明、清时期已经享有盛誉。其特色是皮薄如纸,以制作"绝"、形态"美"、吃法"奇"出名。蟹黄汤包的制作原料为螃蟹的蟹黄和蟹肉,汤为原味鸡汤。其中龙袍蟹黄
  • 焕德科技焕德科技(英语:Adonit)全名焕德科技股份有限公司是一间在奥斯汀与台北市两地设立的跨国公司。2010年在Kickstarter的募资活动而成立的,提供消费电子产品与软件,包含以IPad为主的
  • 台湾碟文蛤台湾碟文蛤(学名:)是帘蛤目帘蛤科楔形蛤属的一种。本物种见于台湾,常栖息在潮间带沙底。