电磁波方程

✍ dations ◷ 2025-11-30 01:33:44 #电磁波方程
在电磁学里,电磁波方程(英语:Electromagnetic wave equation)乃是描述电磁波传播于介质或真空的二阶微分方程。电磁波的波源是局域化的含时电荷密度和电流密度,假若波源为零,则电磁波方程约化为二阶齐次微分方程(英语:homogeneous differential equation)。这方程的形式,以电场 E {displaystyle mathbf {E} ,!} 和磁场 B {displaystyle mathbf {B} ,!} 来表达为其中, ∇ 2 {displaystyle nabla ^{2},!} 是拉普拉斯算符, c {displaystyle c,!} 是电磁波在真空或介质中传播的速度, t {displaystyle t,!} 是时间。由于光波就是电磁波, c {displaystyle c,!} 也是光波传播的速度,称为光速。在真空里, c = c 0 = 299 , 792 , 458 {displaystyle c=c_{0}=299,792,458,!} [米/秒],是电磁波传播于自由空间的速度。在詹姆斯·麦克斯韦的1864年论文《电磁场的动力学理论》内,麦克斯韦将位移电流与其它已成立的电磁方程合并,因而得到了描述电磁波的波动方程。最令人振奋的是,这方程所描述的波动的波速等于光波的速度。他这样说 :在真空里,麦克斯韦方程组的四个微分方程为其中, μ 0 {displaystyle mu _{0},!} 是真空磁导率, ε 0 {displaystyle varepsilon _{0},!} 是真空电容率。分别取公式(2)、(4)的旋度,应用一则矢量恒等式(这里, ∇ 2 V {displaystyle nabla ^{2}mathbf {V} } 应被理解为对V的每个分量取拉普拉斯算子,即拉普拉斯–德拉姆算子)其中, V {displaystyle mathbf {V} ,!} 是任意矢量函数。将公式(1)、(3)代入,即可得到亥姆霍兹方程形式的波动方程:其中, c = c 0 = 1 μ 0 ε 0 = 2.99792458 × 10 8 {displaystyle c=c_{0}={1 over {sqrt {mu _{0}varepsilon _{0}}}}=2.99792458times 10^{8},!} [米/秒]是电磁波传播于自由空间的速度。电磁四维势 A μ {displaystyle A^{mu },!} 是由电势 ϕ {displaystyle phi ,!} 与矢量势 A {displaystyle mathbf {A} ,!} 共同形成的,定义为采用洛伦茨规范:前述那些齐次的波动方程(5)、(6),可以按照反变形式写为其中, ◻ = ∂ ν ∂ ν = ∂ 2 ∂ x ν ∂ x ν = 1 c 2 ∂ 2 ∂ t 2 − ∇ 2 {displaystyle Box =partial ^{nu }partial _{nu }={frac {partial ^{2}}{partial x_{nu }partial x^{nu }}}={frac {1}{{c}^{2}}}{partial ^{2} over partial t^{2}}-nabla ^{2},!} 是达朗贝尔算子,又称为四维拉普拉斯算子。齐次的电磁波方程在弯曲时空中需要做两处修正,分别是将偏导数替换为协变导数,以及增加了一项有关时空曲率的项。假设洛伦茨规范在弯曲时空中的推广为那么,弯曲时空中的齐次的波动方程为其中, R α β {displaystyle {R^{alpha }}_{beta },!} 是里奇曲率张量。追根究底,局域化的含时电荷密度和电流密度是电磁波的波源。在有波源的情形下,麦克斯韦方程组可以写成一个非齐次的电磁波方程的形式。正是因为波源的存在,使得偏微分方程变为非齐次。在齐次的电磁波方程中,电场和磁场的每一个分量都满足标量波动方程其中, f {displaystyle f,!} 是任意良态函数,标量波动方程的一般解的形式为其中, g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 是任意良态函数, r {displaystyle mathbf {r} ,!} 是位置矢量, t {displaystyle t,!} 是时间, k {displaystyle mathbf {k} ,!} 是波矢, ω {displaystyle omega ,!} 是角频率。函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 描述一个波动,随着时间的演化,朝着 k {displaystyle mathbf {k} ,!} 的方向传播于空间。将函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 代入标量波动方程(7),可得到角频率与波数的色散关系:或者,角频率一定大于零,但波数可以是负值:假设,函数 g {displaystyle g,!} 的波形为正弦波:其中, f 0 {displaystyle {f}_{0},!} 是实值波幅, ϕ 0 {displaystyle phi _{0},!} 是初相位。根据欧拉公式,函数 f {displaystyle f,!} 也可以表达为一个复数的实值部分以上方加有波浪号的符号来标记复值变数。设定复值函数 f ~ {displaystyle {tilde {f}},!} 为其中, f ~ 0 = f 0 e i ϕ 0 {displaystyle {tilde {f}}_{0}=f_{0}e^{iphi _{0}},!} 是复值波幅。那么,标量波动方程的正弦波解的形式为 f ~ {displaystyle {tilde {f}},!} 的实值部分。任意涉及实函数 f {displaystyle f,!} 的线性方程,都可以用复函数 f ~ {displaystyle {tilde {f}},!} 来代替 f {displaystyle f,!} 。最后得到的复值答案,只要取实值部分,就可以得到描述实际物理的答案。但是,当遇到非线性方程,必须先转换为实值函数,才能够确保答案的正确性。由于指数函数比三角函数容易计算,在很多场合,都可以使用这技巧。任意波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 可以表达为一个无限集合的不同频率的正弦波的线性叠加:所以,只要能得知单独频率的波动 f ~ 0 ( r , ω ) {displaystyle {tilde {f}}_{0}(mathbf {r} ,omega ),!} (单色波)的表达式,就可以求算整个波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 的表达式。从前面的分析,可以猜到齐次的电磁波方程的单色正弦平面波的解为:其中, E ~ 0 {displaystyle {tilde {mathbf {E} }}_{0},!} 、 B ~ 0 {displaystyle {tilde {mathbf {B} }}_{0},!} 分别为复值电场 E ~ {displaystyle {tilde {mathbf {E} }}} 和复值磁场 B ~ {displaystyle {tilde {mathbf {B} }}} 的复常数振幅矢量。这两个方程显示出的正弦平面波的传播方向是 k {displaystyle mathbf {k} ,!} 的方向。由于方程(1)和(3),电场和磁场垂直于波矢,波动传播的方向。所以,电磁波是横波。由于法拉第电磁感应定律方程(2),将角频率与波数的色散关系式 ω = c k {displaystyle omega =ck,!} 带入:所以,电场与磁场相互垂直于对方;磁场的大小等于电场的大小除以光速。由于麦克斯韦方程组在真空里的线性性质,其解答可以分解为一集合的正弦波。将这集合的正弦波的叠加在一起,又可以形成原本的解答。这是傅里叶变换方法解析微分方程的基础概念。电磁波方程的正弦波解的形式为波矢与角频率的关系为其中, λ {displaystyle lambda ,!} 是波长。按照波长长短,从长波开始,电磁波可以分类为电能、无线电波、微波、红外线、可见光、紫外线、X-射线和伽马射线等等。普通实验使用的光谱仪就足以分析从2  奈米到2500 奈米波长的电磁波。使用这种仪器,可以得知物体、气体或甚至恒星的详细物理性质。这是天文物理学的必备仪器。例如,氢原子会发射波长为21.12公分的无线电波。如图右,思考一条由半径为 a {displaystyle a,!} 的无穷长的直导线,和半径为 b {displaystyle b,!} 的无穷长的圆柱导电管,所组成的共轴传输线。假设这传输线与z-轴平行。由于共轴传输线的内部有一条直导线,不是空心的,它可以传输 E z = 0 {displaystyle E_{z}=0,!} 和 B z = 0 {displaystyle B_{z}=0,!} 的电磁横波,采用圆柱坐标 ( s , ϕ , z ) {displaystyle (s,phi ,z),!} ,在传输线的内部空间,电场和磁场分别为这一组方程显示出电磁波方程的圆柱对称性解的一种形式。思考一个位于原点的振荡中的磁偶极矩 m = m 0 cos ⁡ ( ω t ) {displaystyle m=m_{0}cos(omega t),!} 。这磁偶极矩会发射出电磁波,从原点往无穷远辐射出去。采用球坐标 ( r , θ , ϕ ) {displaystyle (r,theta ,phi ),!} ,则在离原点很远的位置 r {displaystyle mathbf {r} ,!} ,电场和磁场分别为这是一组满足电磁波方程的球面波方程。

相关

  • 八氮立方烷八氮立方烷也称为“立方氮烷”,是氮元素的一种假想单质,分子式为N8。八氮立方烷与N2、N4等互为同素异形体。八氮立方烷分子由8个围成立方体氮原子构成,可以看作所有次甲基都被
  • 瓦利斯和富图纳瓦利斯和富图纳 (法语:Wallis et Futuna),位于斐济和萨摩亚群岛之间。由瓦利斯岛、富图纳岛、阿洛菲岛以及周围小岛组成,面积264平方千米。属热带海洋性气候。人口1.5万。首府马
  • 鱼眼镜头鱼眼镜头指视角接近或等于180°的镜头,视角为众多镜头之冠。这类镜头一般焦距极短,在135底片格式下,16毫米或焦距更短的镜头通常即可认为是鱼眼镜头,绝大部分的鱼眼镜头均是定焦
  • 北布拉班特省北布拉班特省(荷兰语:Noord-Brabant)是荷兰的一个省,地处该国南部,南面与比利时交接,马斯河位其北面,东靠林堡省,西连西兰省。省会城市是斯海尔托亨博斯,最大城市是埃因霍温。(可以查
  • 费维扬费维扬(1939年7月3日-),中国化学工程学家。生于上海。1963年毕业于清华大学工程化学系。清华大学化学工程系教授,化学工程联合国家重点实验室副主任。2003年当选为中国科学院院士
  • 差旋层差旋层是存在于质量超过0.3太阳质量恒星的辐射层和外面有着较差自转的对流层之间的区域。该区域因为旋转速率非常迅速的变坏,导致具有非常大的切变。外面的对流层像是一般的
  • 乔瓦尼·莫尔加尼乔瓦尼·巴蒂什·莫尔加尼(Giovanni Battista Morgagni,1682年2月25日-1771年12月6日)意大利解剖学家和病理学家,他将病理解剖发展成为一门精确的科学,被誉为现代病理解剖学之父。
  • 八元神八元神,也翻译做 八神会。在埃及神话中,“赫麦努”(希腊文“Ogdoad”,意为“八”)是第三至第六王朝的古王国时期,即公元前2686年公元前2134年,在赫尔莫波斯城(Hermopolis)供奉的八位
  • 蔚蓝蔚蓝色,是一个蓝色系的颜色,近似于天空的颜色。其英文“cerulean”一词系来自拉丁语词汇“caeruleum”(意思为天空、天堂)。
  • 氮族元素的氢化物氮族元素的氢化物,又称磷属化氢(英语:hydrogen pnictides)是由氢原子与氮族元素原子(氮、磷、砷、锑、铋或镆)构成的化合物,是一种氢二元化合物(英语:Binary compounds of hydrogen)。