电磁波方程

✍ dations ◷ 2025-04-04 11:26:17 #电磁波方程
在电磁学里,电磁波方程(英语:Electromagnetic wave equation)乃是描述电磁波传播于介质或真空的二阶微分方程。电磁波的波源是局域化的含时电荷密度和电流密度,假若波源为零,则电磁波方程约化为二阶齐次微分方程(英语:homogeneous differential equation)。这方程的形式,以电场 E {displaystyle mathbf {E} ,!} 和磁场 B {displaystyle mathbf {B} ,!} 来表达为其中, ∇ 2 {displaystyle nabla ^{2},!} 是拉普拉斯算符, c {displaystyle c,!} 是电磁波在真空或介质中传播的速度, t {displaystyle t,!} 是时间。由于光波就是电磁波, c {displaystyle c,!} 也是光波传播的速度,称为光速。在真空里, c = c 0 = 299 , 792 , 458 {displaystyle c=c_{0}=299,792,458,!} [米/秒],是电磁波传播于自由空间的速度。在詹姆斯·麦克斯韦的1864年论文《电磁场的动力学理论》内,麦克斯韦将位移电流与其它已成立的电磁方程合并,因而得到了描述电磁波的波动方程。最令人振奋的是,这方程所描述的波动的波速等于光波的速度。他这样说 :在真空里,麦克斯韦方程组的四个微分方程为其中, μ 0 {displaystyle mu _{0},!} 是真空磁导率, ε 0 {displaystyle varepsilon _{0},!} 是真空电容率。分别取公式(2)、(4)的旋度,应用一则矢量恒等式(这里, ∇ 2 V {displaystyle nabla ^{2}mathbf {V} } 应被理解为对V的每个分量取拉普拉斯算子,即拉普拉斯–德拉姆算子)其中, V {displaystyle mathbf {V} ,!} 是任意矢量函数。将公式(1)、(3)代入,即可得到亥姆霍兹方程形式的波动方程:其中, c = c 0 = 1 μ 0 ε 0 = 2.99792458 × 10 8 {displaystyle c=c_{0}={1 over {sqrt {mu _{0}varepsilon _{0}}}}=2.99792458times 10^{8},!} [米/秒]是电磁波传播于自由空间的速度。电磁四维势 A μ {displaystyle A^{mu },!} 是由电势 ϕ {displaystyle phi ,!} 与矢量势 A {displaystyle mathbf {A} ,!} 共同形成的,定义为采用洛伦茨规范:前述那些齐次的波动方程(5)、(6),可以按照反变形式写为其中, ◻ = ∂ ν ∂ ν = ∂ 2 ∂ x ν ∂ x ν = 1 c 2 ∂ 2 ∂ t 2 − ∇ 2 {displaystyle Box =partial ^{nu }partial _{nu }={frac {partial ^{2}}{partial x_{nu }partial x^{nu }}}={frac {1}{{c}^{2}}}{partial ^{2} over partial t^{2}}-nabla ^{2},!} 是达朗贝尔算子,又称为四维拉普拉斯算子。齐次的电磁波方程在弯曲时空中需要做两处修正,分别是将偏导数替换为协变导数,以及增加了一项有关时空曲率的项。假设洛伦茨规范在弯曲时空中的推广为那么,弯曲时空中的齐次的波动方程为其中, R α β {displaystyle {R^{alpha }}_{beta },!} 是里奇曲率张量。追根究底,局域化的含时电荷密度和电流密度是电磁波的波源。在有波源的情形下,麦克斯韦方程组可以写成一个非齐次的电磁波方程的形式。正是因为波源的存在,使得偏微分方程变为非齐次。在齐次的电磁波方程中,电场和磁场的每一个分量都满足标量波动方程其中, f {displaystyle f,!} 是任意良态函数,标量波动方程的一般解的形式为其中, g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 是任意良态函数, r {displaystyle mathbf {r} ,!} 是位置矢量, t {displaystyle t,!} 是时间, k {displaystyle mathbf {k} ,!} 是波矢, ω {displaystyle omega ,!} 是角频率。函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 描述一个波动,随着时间的演化,朝着 k {displaystyle mathbf {k} ,!} 的方向传播于空间。将函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 代入标量波动方程(7),可得到角频率与波数的色散关系:或者,角频率一定大于零,但波数可以是负值:假设,函数 g {displaystyle g,!} 的波形为正弦波:其中, f 0 {displaystyle {f}_{0},!} 是实值波幅, ϕ 0 {displaystyle phi _{0},!} 是初相位。根据欧拉公式,函数 f {displaystyle f,!} 也可以表达为一个复数的实值部分以上方加有波浪号的符号来标记复值变数。设定复值函数 f ~ {displaystyle {tilde {f}},!} 为其中, f ~ 0 = f 0 e i ϕ 0 {displaystyle {tilde {f}}_{0}=f_{0}e^{iphi _{0}},!} 是复值波幅。那么,标量波动方程的正弦波解的形式为 f ~ {displaystyle {tilde {f}},!} 的实值部分。任意涉及实函数 f {displaystyle f,!} 的线性方程,都可以用复函数 f ~ {displaystyle {tilde {f}},!} 来代替 f {displaystyle f,!} 。最后得到的复值答案,只要取实值部分,就可以得到描述实际物理的答案。但是,当遇到非线性方程,必须先转换为实值函数,才能够确保答案的正确性。由于指数函数比三角函数容易计算,在很多场合,都可以使用这技巧。任意波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 可以表达为一个无限集合的不同频率的正弦波的线性叠加:所以,只要能得知单独频率的波动 f ~ 0 ( r , ω ) {displaystyle {tilde {f}}_{0}(mathbf {r} ,omega ),!} (单色波)的表达式,就可以求算整个波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 的表达式。从前面的分析,可以猜到齐次的电磁波方程的单色正弦平面波的解为:其中, E ~ 0 {displaystyle {tilde {mathbf {E} }}_{0},!} 、 B ~ 0 {displaystyle {tilde {mathbf {B} }}_{0},!} 分别为复值电场 E ~ {displaystyle {tilde {mathbf {E} }}} 和复值磁场 B ~ {displaystyle {tilde {mathbf {B} }}} 的复常数振幅矢量。这两个方程显示出的正弦平面波的传播方向是 k {displaystyle mathbf {k} ,!} 的方向。由于方程(1)和(3),电场和磁场垂直于波矢,波动传播的方向。所以,电磁波是横波。由于法拉第电磁感应定律方程(2),将角频率与波数的色散关系式 ω = c k {displaystyle omega =ck,!} 带入:所以,电场与磁场相互垂直于对方;磁场的大小等于电场的大小除以光速。由于麦克斯韦方程组在真空里的线性性质,其解答可以分解为一集合的正弦波。将这集合的正弦波的叠加在一起,又可以形成原本的解答。这是傅里叶变换方法解析微分方程的基础概念。电磁波方程的正弦波解的形式为波矢与角频率的关系为其中, λ {displaystyle lambda ,!} 是波长。按照波长长短,从长波开始,电磁波可以分类为电能、无线电波、微波、红外线、可见光、紫外线、X-射线和伽马射线等等。普通实验使用的光谱仪就足以分析从2  奈米到2500 奈米波长的电磁波。使用这种仪器,可以得知物体、气体或甚至恒星的详细物理性质。这是天文物理学的必备仪器。例如,氢原子会发射波长为21.12公分的无线电波。如图右,思考一条由半径为 a {displaystyle a,!} 的无穷长的直导线,和半径为 b {displaystyle b,!} 的无穷长的圆柱导电管,所组成的共轴传输线。假设这传输线与z-轴平行。由于共轴传输线的内部有一条直导线,不是空心的,它可以传输 E z = 0 {displaystyle E_{z}=0,!} 和 B z = 0 {displaystyle B_{z}=0,!} 的电磁横波,采用圆柱坐标 ( s , ϕ , z ) {displaystyle (s,phi ,z),!} ,在传输线的内部空间,电场和磁场分别为这一组方程显示出电磁波方程的圆柱对称性解的一种形式。思考一个位于原点的振荡中的磁偶极矩 m = m 0 cos ⁡ ( ω t ) {displaystyle m=m_{0}cos(omega t),!} 。这磁偶极矩会发射出电磁波,从原点往无穷远辐射出去。采用球坐标 ( r , θ , ϕ ) {displaystyle (r,theta ,phi ),!} ,则在离原点很远的位置 r {displaystyle mathbf {r} ,!} ,电场和磁场分别为这是一组满足电磁波方程的球面波方程。

相关

  • 今生物学今生物学,又名现生生物学,是生物学的一个重要分支。它与古生物学相反,研究的是现存生物。它和古生物学的分界线并不固定。如当有拉撒路物种出现时,一个物种全部灭绝的分类就会进
  • 丙酮酸丙酮酸(英语:pyruvic acid,化学式:CH3COCOOH)是一种α-酮酸,其闪点为82 °C,在生物化学代谢途径中扮演重要角色。丙酮酸的羧酸盐阴离子(carboxylate anion)被称之为丙酮酸盐(pyruvate
  • 人文科学人文科学(英语:Human science),对于由人类产生的各种现象,进行的各种科学研究与科学解释。在这个领域中研究的主题,包括各种与人类相关的经验,活动,社会建构等。其目的在于阐明与扩
  • 梭状回梭状回(Fusiform gyrus)是颞叶与枕叶一部分,在布罗德曼分区系统为37区。也被称作“枕颞内侧回”(discontinuous occipitotemporal gyrus)。位于颞下回与海马旁回之间。 梭状回的
  • 费慰梅威尔玛·坎农·费尔班克(英语:Wilma Cannon Fairbank,婚前本姓 Cannon,1909年4月23日-2002年4月4日),汉名费慰梅,是一位研究中国艺术和建筑的美国学者。其夫费正清。费慰梅生于美国
  • 迷恋迷恋或痴情是指沉醉于一段难以言表的情爱之中的状态。通常指对一个人产生一种强烈而浪漫的柏拉图式情感。教育心理学博士弗兰克·科克斯(Frank D. Cox)表示,只有回顾特定的情节
  • .gl.gl为格陵兰国家及地区顶级域(ccTLD)的域名。2009年12月15日,Google推出缩短网址服务“Google URL Shortener”(goo.gl),就是使用.gl的域名。A .ac .ad .ae .af .ag .ai .al .am
  • 都市传说都市传说(英语:urban legend),又称现代传说(英语:contemporary legend)、都市怪谈,是一种主要以现代化生活为背景,由叙述者煞有其事地讲述,以新奇、怪诞或吓人情节为主要特色的短篇幅
  • 日本学士院日本学士院(日语:日本学士院/にっぽんがくしいん nippon gakushiin */?,英语:The Japan Academy)是日本文部科学省所属的特别机关。该院是根据以优待学术上取得功绩显著的学者,促
  • 875年重要事件及趋势逝世重要人物