电磁波方程

✍ dations ◷ 2024-07-05 10:36:34 #电磁波方程
在电磁学里,电磁波方程(英语:Electromagnetic wave equation)乃是描述电磁波传播于介质或真空的二阶微分方程。电磁波的波源是局域化的含时电荷密度和电流密度,假若波源为零,则电磁波方程约化为二阶齐次微分方程(英语:homogeneous differential equation)。这方程的形式,以电场 E {displaystyle mathbf {E} ,!} 和磁场 B {displaystyle mathbf {B} ,!} 来表达为其中, ∇ 2 {displaystyle nabla ^{2},!} 是拉普拉斯算符, c {displaystyle c,!} 是电磁波在真空或介质中传播的速度, t {displaystyle t,!} 是时间。由于光波就是电磁波, c {displaystyle c,!} 也是光波传播的速度,称为光速。在真空里, c = c 0 = 299 , 792 , 458 {displaystyle c=c_{0}=299,792,458,!} [米/秒],是电磁波传播于自由空间的速度。在詹姆斯·麦克斯韦的1864年论文《电磁场的动力学理论》内,麦克斯韦将位移电流与其它已成立的电磁方程合并,因而得到了描述电磁波的波动方程。最令人振奋的是,这方程所描述的波动的波速等于光波的速度。他这样说 :在真空里,麦克斯韦方程组的四个微分方程为其中, μ 0 {displaystyle mu _{0},!} 是真空磁导率, ε 0 {displaystyle varepsilon _{0},!} 是真空电容率。分别取公式(2)、(4)的旋度,应用一则矢量恒等式(这里, ∇ 2 V {displaystyle nabla ^{2}mathbf {V} } 应被理解为对V的每个分量取拉普拉斯算子,即拉普拉斯–德拉姆算子)其中, V {displaystyle mathbf {V} ,!} 是任意矢量函数。将公式(1)、(3)代入,即可得到亥姆霍兹方程形式的波动方程:其中, c = c 0 = 1 μ 0 ε 0 = 2.99792458 × 10 8 {displaystyle c=c_{0}={1 over {sqrt {mu _{0}varepsilon _{0}}}}=2.99792458times 10^{8},!} [米/秒]是电磁波传播于自由空间的速度。电磁四维势 A μ {displaystyle A^{mu },!} 是由电势 ϕ {displaystyle phi ,!} 与矢量势 A {displaystyle mathbf {A} ,!} 共同形成的,定义为采用洛伦茨规范:前述那些齐次的波动方程(5)、(6),可以按照反变形式写为其中, ◻ = ∂ ν ∂ ν = ∂ 2 ∂ x ν ∂ x ν = 1 c 2 ∂ 2 ∂ t 2 − ∇ 2 {displaystyle Box =partial ^{nu }partial _{nu }={frac {partial ^{2}}{partial x_{nu }partial x^{nu }}}={frac {1}{{c}^{2}}}{partial ^{2} over partial t^{2}}-nabla ^{2},!} 是达朗贝尔算子,又称为四维拉普拉斯算子。齐次的电磁波方程在弯曲时空中需要做两处修正,分别是将偏导数替换为协变导数,以及增加了一项有关时空曲率的项。假设洛伦茨规范在弯曲时空中的推广为那么,弯曲时空中的齐次的波动方程为其中, R α β {displaystyle {R^{alpha }}_{beta },!} 是里奇曲率张量。追根究底,局域化的含时电荷密度和电流密度是电磁波的波源。在有波源的情形下,麦克斯韦方程组可以写成一个非齐次的电磁波方程的形式。正是因为波源的存在,使得偏微分方程变为非齐次。在齐次的电磁波方程中,电场和磁场的每一个分量都满足标量波动方程其中, f {displaystyle f,!} 是任意良态函数,标量波动方程的一般解的形式为其中, g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 是任意良态函数, r {displaystyle mathbf {r} ,!} 是位置矢量, t {displaystyle t,!} 是时间, k {displaystyle mathbf {k} ,!} 是波矢, ω {displaystyle omega ,!} 是角频率。函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 描述一个波动,随着时间的演化,朝着 k {displaystyle mathbf {k} ,!} 的方向传播于空间。将函数 g ( k ⋅ r − ω t ) {displaystyle g(mathbf {k} cdot mathbf {r} -omega t),!} 代入标量波动方程(7),可得到角频率与波数的色散关系:或者,角频率一定大于零,但波数可以是负值:假设,函数 g {displaystyle g,!} 的波形为正弦波:其中, f 0 {displaystyle {f}_{0},!} 是实值波幅, ϕ 0 {displaystyle phi _{0},!} 是初相位。根据欧拉公式,函数 f {displaystyle f,!} 也可以表达为一个复数的实值部分以上方加有波浪号的符号来标记复值变数。设定复值函数 f ~ {displaystyle {tilde {f}},!} 为其中, f ~ 0 = f 0 e i ϕ 0 {displaystyle {tilde {f}}_{0}=f_{0}e^{iphi _{0}},!} 是复值波幅。那么,标量波动方程的正弦波解的形式为 f ~ {displaystyle {tilde {f}},!} 的实值部分。任意涉及实函数 f {displaystyle f,!} 的线性方程,都可以用复函数 f ~ {displaystyle {tilde {f}},!} 来代替 f {displaystyle f,!} 。最后得到的复值答案,只要取实值部分,就可以得到描述实际物理的答案。但是,当遇到非线性方程,必须先转换为实值函数,才能够确保答案的正确性。由于指数函数比三角函数容易计算,在很多场合,都可以使用这技巧。任意波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 可以表达为一个无限集合的不同频率的正弦波的线性叠加:所以,只要能得知单独频率的波动 f ~ 0 ( r , ω ) {displaystyle {tilde {f}}_{0}(mathbf {r} ,omega ),!} (单色波)的表达式,就可以求算整个波动 f ( r , t ) {displaystyle f(mathbf {r} ,t),!} 的表达式。从前面的分析,可以猜到齐次的电磁波方程的单色正弦平面波的解为:其中, E ~ 0 {displaystyle {tilde {mathbf {E} }}_{0},!} 、 B ~ 0 {displaystyle {tilde {mathbf {B} }}_{0},!} 分别为复值电场 E ~ {displaystyle {tilde {mathbf {E} }}} 和复值磁场 B ~ {displaystyle {tilde {mathbf {B} }}} 的复常数振幅矢量。这两个方程显示出的正弦平面波的传播方向是 k {displaystyle mathbf {k} ,!} 的方向。由于方程(1)和(3),电场和磁场垂直于波矢,波动传播的方向。所以,电磁波是横波。由于法拉第电磁感应定律方程(2),将角频率与波数的色散关系式 ω = c k {displaystyle omega =ck,!} 带入:所以,电场与磁场相互垂直于对方;磁场的大小等于电场的大小除以光速。由于麦克斯韦方程组在真空里的线性性质,其解答可以分解为一集合的正弦波。将这集合的正弦波的叠加在一起,又可以形成原本的解答。这是傅里叶变换方法解析微分方程的基础概念。电磁波方程的正弦波解的形式为波矢与角频率的关系为其中, λ {displaystyle lambda ,!} 是波长。按照波长长短,从长波开始,电磁波可以分类为电能、无线电波、微波、红外线、可见光、紫外线、X-射线和伽马射线等等。普通实验使用的光谱仪就足以分析从2  奈米到2500 奈米波长的电磁波。使用这种仪器,可以得知物体、气体或甚至恒星的详细物理性质。这是天文物理学的必备仪器。例如,氢原子会发射波长为21.12公分的无线电波。如图右,思考一条由半径为 a {displaystyle a,!} 的无穷长的直导线,和半径为 b {displaystyle b,!} 的无穷长的圆柱导电管,所组成的共轴传输线。假设这传输线与z-轴平行。由于共轴传输线的内部有一条直导线,不是空心的,它可以传输 E z = 0 {displaystyle E_{z}=0,!} 和 B z = 0 {displaystyle B_{z}=0,!} 的电磁横波,采用圆柱坐标 ( s , ϕ , z ) {displaystyle (s,phi ,z),!} ,在传输线的内部空间,电场和磁场分别为这一组方程显示出电磁波方程的圆柱对称性解的一种形式。思考一个位于原点的振荡中的磁偶极矩 m = m 0 cos ⁡ ( ω t ) {displaystyle m=m_{0}cos(omega t),!} 。这磁偶极矩会发射出电磁波,从原点往无穷远辐射出去。采用球坐标 ( r , θ , ϕ ) {displaystyle (r,theta ,phi ),!} ,则在离原点很远的位置 r {displaystyle mathbf {r} ,!} ,电场和磁场分别为这是一组满足电磁波方程的球面波方程。

相关

  • 免疫能力抑制免疫抑制(英语:immunosuppression)是指对于免疫应答的抑制作用。免疫抑制可由天然或人为因素导致。天然免疫抑制包括天然免疫耐受,机体可能会对自身组织成分不产生免疫应答。人
  • 置信区间在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于
  • 丘疹丘疹(英语:papule),为局限性、实质性、直径小于1cm的表浅隆起性皮损。丘疹表面可扁平(如扁平疣(英语:flat wart))、圆形脐凹状(如传染性软疣)或粗糙不平呈乳头状,颜色可呈紫红色(如扁平
  • 地瓜叶番薯叶或称地瓜叶、甘薯叶,是旋花科番薯属植物番薯的叶,可作为蔬菜食用。早年种植番薯的农民为求物尽其用,割下番薯叶后多半将它煮熟。亦有农民只摘取嫩叶部分炒熟吃,或加入蒜末
  • 布洛克县布洛克县(Bulloch County)是位于美国佐治亚州东部的一个县,面积1,754平方公里,县治斯泰茨伯勒。根据2000年美国人口普查,共有人口61,457。布洛克县成立于1796年2月8日,县名源自佐
  • 捷克国家图书馆克莱门特学院(Klementinum)是捷克首都布拉格市中心的一组历史建筑群,目前用作捷克的国家图书馆。克莱门特学院的历史可以追溯到11世纪一座朝拜圣克莱门特的小圣堂。在中世纪,多
  • 纺车纺车是用于从纤维材料如毛、棉、麻、丝中生产线或纱的设备。传统纺车通常有一个用手或脚驱动的轮子和一个纱锭。纺车生产纱的过程称为纺纱,是纺织的两道工序之一。在中国,新石
  • 地出地出(英语:Earthrise,或译地球上升),为美国国家航空航天局的照片。这张编号“AS8-14-2383HR”的照片由正在阿波罗8号太空船上执行前往月球任务的宇航员威廉·安德斯在1968年12月2
  • 气场气场(Aura)在超心理学、灵性思想、以及新纪元运动中,常被描绘成一个发光的光环,围绕着人类或是其他生物个体,可能呈现茧状。中文里也常译为灵气或灵光。有些东亚地区的虚构故事中
  • 凯撒和克利奥帕特拉《凯撒和埃及艳后》(英语:Caesar and Cleopatra),1945年英国特艺七彩电影,改编自萧伯纳1901年的剧本《凯撒和埃及艳后》,由加布里埃尔·帕斯卡尔执导,克劳德·雷恩斯和费雯·丽主演