首页 >
旋转对称性
✍ dations ◷ 2025-06-27 14:26:51 #旋转对称性
在数学里,给予一个定义于内积空间的函数,假若对于任意旋转,函数的参数值可能会改变,但是函数的数值仍旧保持不变,则称此性质为旋转不变性(rotational invariance),或旋转对称性(rotational symmetry),因为函数对于旋转具有对称性。例如,假设以xyz-参考系的原点为固定点,任意旋转xyz-参考系,而函数
f
(
x
,
y
,
z
)
=
x
2
+
y
2
+
z
2
{displaystyle f(x,,y,,z)=x^{2}+y^{2}+z^{2}}
的数值保持不变,因此,函数
f
(
x
,
y
,
z
)
{displaystyle f(x,,y,,z)}
对于任意旋转具有不变性,或对于任意旋转具有对称性。在物理学里,假若物理系统的性质跟它在空间的取向无关,则这系统具有旋转不变性。根据诺特定理,假若物理系统的作用量具有旋转不变性,则角动量守恒。根据物理学家多年来仔细研究的结果,到目前为止,所有的物理基础定律都具有旋转不变性。假设一个量子系统的位势为球对称位势
V
(
r
)
{displaystyle V(r)}
,其哈密顿算符
H
{displaystyle H}
可以表示为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
m
{displaystyle m}
是质量,
r
{displaystyle r}
是径向距离。现在,以 z-轴为旋转轴,旋转此系统的 x-轴与 y-轴
θ
{displaystyle theta }
角弧,则新直角坐标
r
′
=
(
x
′
,
y
′
,
z
′
)
{displaystyle mathbf {r} '=(x',,y',,z')}
与旧直角坐标的关系式为偏导数为那么,导数项目具有旋转不变性:由于径向距离具有旋转不变性:旋转之后,新的哈密顿算符
H
′
{displaystyle H'}
是所以,球对称位势量子系统的哈密顿算符具有旋转不变性。假设一个量子系统的位势为球对称位势
V
(
r
)
{displaystyle V(r)}
,则哈密顿算符具有旋转不变性。定义旋转算符
R
{displaystyle R}
为一个对于 z-轴的无穷小旋转
δ
θ
{displaystyle delta theta }
。则正弦函数与余弦函数可以分别近似为新直角坐标与旧直角坐标之间的关系式为将
R
{displaystyle R}
作用于波函数
ψ
(
x
,
y
,
z
)
{displaystyle psi (x,,y,,z)}
,其中,
L
z
{displaystyle L_{z}}
是角动量的 z-分量,
L
z
=
x
p
y
−
y
p
x
=
−
i
ℏ
(
x
∂
∂
y
−
y
∂
∂
x
)
{displaystyle L_{z}=xp_{y}-yp_{x}=-ihbar left(x{frac {partial }{partial y}}-y{frac {partial }{partial x}}right)}
。所以,旋转算符
R
{displaystyle R}
可以表达为假设
ψ
E
(
r
)
{displaystyle psi _{E}(mathbf {r} )}
是哈密顿算符的能级本征态,则由于
r
{displaystyle mathbf {r} }
只是一个虚设变数,在做一个微小旋转之后,所以,
(
R
H
−
H
R
)
ψ
E
(
r
)
=
0
{displaystyle (RH-HR)psi _{E}(mathbf {r} )=0}
。哈密顿算符的能级本征态
ψ
E
(
r
)
{displaystyle psi _{E}(mathbf {r} )}
形成一组完备集 (complete set),旋转算符和哈密顿算符的对易关系是因此,根据埃伦费斯特定理,
L
z
{displaystyle L_{z}}
的期望值对于时间的导数是所以,由于
L
z
{displaystyle L_{z}}
显性地不含时间,总结,
⟨
L
z
⟩
{displaystyle langle L_{z}rangle }
不含时间,
L
z
{displaystyle L_{z}}
是个运动常数。角动量的 z-分量守恒。类似地,可以导出其它分量也拥有同样的性质。所以,整个角动量守恒。
相关
- 囊肿囊肿(Cyst)是一个封闭的囊,具有明显的膜组织,也会产生细胞分裂。囊肿内部可能包含空气、液体或半固体物质。脓液的集合体称为一个囊肿。囊肿有时会自行消失,也可能需要通过外科手
- 心肌心肌是由心肌细胞构成的一种肌肉组织。心肌细胞分布不单在心壁上,临心大血管上也有心肌的分布。心肌也是横纹肌。相比起骨骼肌细胞,心肌细胞有其自身的特点:
- 死亡行军死亡行军 是一个针对战俘或其他俘虏或被驱逐出境者的强迫行军,旨在令他们死在途中,这就把它们从一般单纯的用徒步行军去运送囚犯区分出来。死亡行军通常包含严苛的体力劳动和
- 选择压力演化压力,或选择压力,可以被认为是外界施与一个生物演化过程的压力,从而改变该过程的前进方向。所谓达尔文的自然选择,或者物竞天择,适者生存,即是说,自然界施与生物体选择压力从而
- 囊泡藻界囊泡藻界(学名:Chromalveolata)是一类真核生物。囊泡藻界这个概念是汤玛斯·卡弗利尔-史密斯1981年提出的色藻界的修订。表示双鞭毛生物与红藻发生单独的内共生后进化出的所有
- 神话人物表希腊神话神祇列表及人物。希腊神话中有很多神是将精神上的概念拟人化的结果。除却冥界本来的神之外,一些人类,特别是一些英雄在死后也成为冥界特殊的存在。
- 信息系统信息系统或资讯系统(Information Systems),从技术上说就是为了支持组织决策和控制而收集(或获取)、处理、存储、分配信息的一组相互关系的组件。除了支持决策、协作和控制,信息系
- emem是字体排印学的计量单位,相当于当前指定的点数。例如,1 em在16点的字体中就是16点。因此,这个单位等同于所有字体排印中指定的点数。排印学中用这个单位的计量常以十进制表达
- 热力学热力学,全称热动力学(法语:thermodynamique,德语:Thermodynamik,英语:thermodynamics,源于古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着
- 电场电场是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场