首页 >
旋转对称性
✍ dations ◷ 2025-04-03 10:33:06 #旋转对称性
在数学里,给予一个定义于内积空间的函数,假若对于任意旋转,函数的参数值可能会改变,但是函数的数值仍旧保持不变,则称此性质为旋转不变性(rotational invariance),或旋转对称性(rotational symmetry),因为函数对于旋转具有对称性。例如,假设以xyz-参考系的原点为固定点,任意旋转xyz-参考系,而函数
f
(
x
,
y
,
z
)
=
x
2
+
y
2
+
z
2
{displaystyle f(x,,y,,z)=x^{2}+y^{2}+z^{2}}
的数值保持不变,因此,函数
f
(
x
,
y
,
z
)
{displaystyle f(x,,y,,z)}
对于任意旋转具有不变性,或对于任意旋转具有对称性。在物理学里,假若物理系统的性质跟它在空间的取向无关,则这系统具有旋转不变性。根据诺特定理,假若物理系统的作用量具有旋转不变性,则角动量守恒。根据物理学家多年来仔细研究的结果,到目前为止,所有的物理基础定律都具有旋转不变性。假设一个量子系统的位势为球对称位势
V
(
r
)
{displaystyle V(r)}
,其哈密顿算符
H
{displaystyle H}
可以表示为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
m
{displaystyle m}
是质量,
r
{displaystyle r}
是径向距离。现在,以 z-轴为旋转轴,旋转此系统的 x-轴与 y-轴
θ
{displaystyle theta }
角弧,则新直角坐标
r
′
=
(
x
′
,
y
′
,
z
′
)
{displaystyle mathbf {r} '=(x',,y',,z')}
与旧直角坐标的关系式为偏导数为那么,导数项目具有旋转不变性:由于径向距离具有旋转不变性:旋转之后,新的哈密顿算符
H
′
{displaystyle H'}
是所以,球对称位势量子系统的哈密顿算符具有旋转不变性。假设一个量子系统的位势为球对称位势
V
(
r
)
{displaystyle V(r)}
,则哈密顿算符具有旋转不变性。定义旋转算符
R
{displaystyle R}
为一个对于 z-轴的无穷小旋转
δ
θ
{displaystyle delta theta }
。则正弦函数与余弦函数可以分别近似为新直角坐标与旧直角坐标之间的关系式为将
R
{displaystyle R}
作用于波函数
ψ
(
x
,
y
,
z
)
{displaystyle psi (x,,y,,z)}
,其中,
L
z
{displaystyle L_{z}}
是角动量的 z-分量,
L
z
=
x
p
y
−
y
p
x
=
−
i
ℏ
(
x
∂
∂
y
−
y
∂
∂
x
)
{displaystyle L_{z}=xp_{y}-yp_{x}=-ihbar left(x{frac {partial }{partial y}}-y{frac {partial }{partial x}}right)}
。所以,旋转算符
R
{displaystyle R}
可以表达为假设
ψ
E
(
r
)
{displaystyle psi _{E}(mathbf {r} )}
是哈密顿算符的能级本征态,则由于
r
{displaystyle mathbf {r} }
只是一个虚设变数,在做一个微小旋转之后,所以,
(
R
H
−
H
R
)
ψ
E
(
r
)
=
0
{displaystyle (RH-HR)psi _{E}(mathbf {r} )=0}
。哈密顿算符的能级本征态
ψ
E
(
r
)
{displaystyle psi _{E}(mathbf {r} )}
形成一组完备集 (complete set),旋转算符和哈密顿算符的对易关系是因此,根据埃伦费斯特定理,
L
z
{displaystyle L_{z}}
的期望值对于时间的导数是所以,由于
L
z
{displaystyle L_{z}}
显性地不含时间,总结,
⟨
L
z
⟩
{displaystyle langle L_{z}rangle }
不含时间,
L
z
{displaystyle L_{z}}
是个运动常数。角动量的 z-分量守恒。类似地,可以导出其它分量也拥有同样的性质。所以,整个角动量守恒。
相关
- 赌博成瘾赌博成瘾或问题赌博(Ludomania)是一种持续需要赌博的心理,尽管患者明知其负面危害,又或希望停止。问题赌博的定义,在于赌徒或其他人受到伤害,而不是赌徒的行为会否构成伤害。对于
- 薛氏点薛氏点是一种由疟原虫引起的红细胞血液学病变, 薛氏点仅发现于被卵形疟原虫和间日疟原虫寄生的红细胞中。德国生物学家威廉·薛夫讷(德语:Wilhelm Schüffner)于1904年首次对其
- 朗罕氏巨细胞朗罕氏巨细胞(英语:Langhans giant cells,又称Pirogov-Langhans cells,也译作:langhans巨细胞、朗汉斯细胞)是在肉芽肿组织下发现的一类多核巨细胞。它体积大,胞浆宽,着粉红色,胞核从
- 联合国人道事务协调厅联合国人道主义事务协调厅(英语:United Nations Office for the Coordination of Humanitarian Affairs,缩写为OCHA)是联合国秘书处的下属机构,根据1991年12月第46届联合国大会第
- 鹊鸲鹊鸲(学名:Copsychus saularis),又名猪屎渣、吱渣、信鸟或四喜,属鹟科鹊鸲属。分布于中国南部及南亚、东南亚国家。在印度它是一种观赏鸟,更是孟加拉国的国鸟。鹊鸲雄鸟体长19厘米
- 剑桥大学出版社剑桥大学出版社(英语:Cambridge University Press)隶属于英国剑桥大学,成立于1534年,是世界上仅次于牛津大学出版社的第二大大学出版社。剑桥大学出版社为世上现存最古老的大学出
- 免疫抗原性人体免疫系统对于特定抗原能够产生免疫反应,则称其有免疫原性。与反应原性不同之处在于人体在对某些抗原本身不会直接产生免疫反应,而要在类似的另一种抗原刺激下,获得对前一种
- 罗莎琳·富兰克林罗莎琳·爱尔西·富兰克林(英语:Rosalind Elsie Franklin,1920年7月25日-1958年4月16日),是一位英国物理化学家与晶体学家。她所做的研究,专注于DNA、病毒、煤炭与石墨等物质的结构
- 血管收缩剂血管收缩(vasoconstriction),亦即血管收窄,是指体内血管管腔收窄,这会造成血压的上升。它的相反过程称为血管舒张。血管收缩可以是由血管收缩剂造成。血管收缩剂是针对特定的受体
- 掌控可忽略衰老掌控可忽略衰老(Engineered negligible senescence 或 Strategies for Engineered Negligible Senescence,SENS)乃是一种建议中的医疗科技策略,透过医疗工程预防并把衰老或受损