正常重力位

✍ dations ◷ 2025-10-16 14:59:20 #大地测量学,地球物理学,Pages that use a deprecated format of the math tags

正常重力位(英语:Normal gravity potential)是大地测量学中用于对地球的真实重力位进行近似的数学工具,是一个规则的、较为简单的重力位函数。:190正常重力是正常重力位的梯度。:68

地球的真实重力位在研究地球形状及其外部重力场的过程中是待解的未知量,且对其直接计算需要了解地球内部的质量分布,理论上被无法精确求得,且反演过程计算复杂。因此,研究中常选用一个规则的正常椭球体对地球的形状进行近似,将其产生的重力场中的重力位称为正常重力位:15,而把真实重力位与正常重力位的差异称作扰动位。选择适当的正常重力位,可以使扰动位成为微小量,便于以线性近似的方式对其进行求解。:64在地球重力场中,正常重力位可以占到到真实重力位的 99.9995 % {\displaystyle 99.9995\%} :15。

正常重力位应当具有以下特性::94

这些特性保证了正常重力位是规则分布的,利用这些性质能够简化复杂的计算过程。最后一个条件保证了还正常椭球体的表面是一个重力等位面。

正常重力位 U {\displaystyle U} 包含两部分,一部分是因正常椭球体的质量而产生的引力位 V {\displaystyle V} ,另一部分是因正常椭球体的绕轴自转而产生的离心力位 Φ {\displaystyle \Phi } ::64

上式中, ω {\displaystyle \omega } 表示地球自转的角速度, ( x , y , z ) {\displaystyle (x,y,z)} 是正常椭球体外部空间中某点的笛卡尔坐标,该坐标系的 Z {\displaystyle Z} 轴与椭球体的自转轴平行或重合。其中的离心力位 Φ {\displaystyle \Phi } 可以由点的坐标直接求得,不必展开为级数,只需对引力位 V {\displaystyle V} 进行展开即可。:197

采用球面作为正常椭球体的近似,将椭球体外部( r > a {\displaystyle r>a} )的引力位展开为边界面( r = a {\displaystyle r=a} )上的球谐级数,则其表达式为::59:79

上式中各项符号的物理或数学意义如下:

其中 δ m , 0 {\displaystyle \delta _{m,0}} 为克罗内克δ函数,当 m = 0 {\displaystyle m=0} 时为零,其他情况下为一。

展开后的球谐级数具有以下性质:

根据上述性质,该表达式可进一步简化为:

利用引力位 V {\displaystyle V} 在边界面外部满足拉普拉斯方程的性质,将地球的真实引力位可展开为球谐级数,保留其中的头几项作为正常重力位的引力位部分从而确定正常重力位的方法被称为拉普拉斯方法。:190-191通过选取不同的大地水准面重力位值,可以得到不同的正常重力位等位面,从中选取一个最接近于大地水准面的,这一曲面即为产生正常重力位的质体的表面。

将正常重力位直接展开成椭球面 S 0 {\displaystyle S_{0}} 上的级数,称为椭球谐级数,形式较球谐函数更为复杂::65

上式中各项符号的物理或数学意义与球谐函数有所不同:

u = b {\displaystyle u=b} 时,由重力位 U 0 {\displaystyle U_{0}} 所决定的等位面应当与正常椭球面 S 0 {\displaystyle S_{0}} 相重合,此时有:

当且仅当所有含 P n ( sin β ) {\displaystyle P_{n}(\sin \beta )} 的项均为零时,对于任意 β {\displaystyle \beta } 值该公式都成立。对其头三项进行展开::66

因此,有

得到引力位部分的椭球谐级数表达式为::66

其中

考虑到椭圆坐标 ( u , β ) {\displaystyle (u,\beta )} 与向径 r {\displaystyle r} 存在如下转换关系:

利用该关系对下式进行线性化,得:

利用这两项关系式,可以得到线性化后的引力位函数:

比较与

得出大地水准面重力位的表达式::67

将大地水准面重力位的表达式代入原正常重力位的计算公式中,得::67

球谐系数的积分公式中包含了正常椭球体内质量的分布关系,且积分范围是整个正常椭球体,因此球谐系数与正常椭球体的某些物理性质相关。

n = 0 {\displaystyle n=0} 时,球谐系数只有一项::61

即球谐系数的零阶项反映了正常椭球体的地心引力常数或总质量。

n = 1 {\displaystyle n=1} 时,球谐系数有三项::61

其中, r M = ( x M , y M , z M ) {\displaystyle {\vec {r}}_{M}=\left(x_{M},y_{M},z_{M}\right)} 表示椭球的质心坐标。当坐标系的原点与椭球质心重合时, x M = y M = z M = 0 {\displaystyle x_{M}=y_{M}=z_{M}=0} ,所以球谐系数的一阶项一般都为零。:62

n = 2 {\displaystyle n=2} 时,球谐系数有五项(仅以 A m , n {\displaystyle A_{m,n}} B m , n {\displaystyle B_{m,n}} 为例)::62

其中的五项积分,既可以四极矩张量 Q {\displaystyle \mathbf {Q} } 或惯性张量 I {\displaystyle \mathbf {I} } 表达::91

当且仅当坐标系的各坐标轴与地球的主惯性轴重合时, I x z = I x y = I y z = 0 {\displaystyle I_{xz}=I_{xy}=I_{yz}=0} ,因此亦有 A 2 , 1 = B 2 , 1 = B 2 , 2 = 0 {\displaystyle A_{2,1}=B_{2,1}=B_{2,2}=0} 。反过来,坐标轴的选择又决定了这三个二阶项系数的值:当坐标系的 Z {\displaystyle Z} 轴指向协议地球极时,受极移等因素的影响,这一指向与地球的瞬时主惯性轴并不重合,因此 A 2 , 1 {\displaystyle A_{2,1}} B 2 , 1 {\displaystyle B_{2,1}} 的并不为零;而 X {\displaystyle X} 轴的指向(通常是本初子午线)则决定了 B 2 , 2 {\displaystyle B_{2,2}} 的数值。:91 另外, A 2 , 2 {\displaystyle A_{2,2}} 由赤道的形状决定:当正常椭球为对称的旋转体时,赤道是圆形,此时 I x x = I y y {\displaystyle I_{xx}=I_{yy}} ,即有 A 2 , 2 = 0 {\displaystyle A_{2,2}=0} 。:205

相关

  • 大环内酯类抗生素大环内酯(macrolides),或称大环内酯,是一组其作用在于结构内的“大环”的药物(一般都是抗生素),这个大环亦即是一连结一个或多个脱氧糖(多是红霉糖(英语:cladinose)及去氧糖胺(英语:desos
  • 环境监测作业环境监测是通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水
  • 细胞毒素细胞毒性(英语:Cytotoxicity)是指细胞受到释放出的有毒物质而引起的细胞毒性反应。化疗药物具有细胞毒性,一旦进入体内,能区分哪些是癌细胞和正常细胞,达到了杀癌细胞,保护正常细胞
  • 中央商务区悉尼中心商务区(英语:Sydney central business district,(CBD))是澳大利亚新南威尔士州首府悉尼的商业中心。悉尼中心商务区在很大程度上与悉尼的市中心悉尼城区(Sydney City)吻合,因
  • 福田赳夫福田赳夫(日语:福田 赳夫/ふくだ たけお Fukuda Takeo;1905年1月14日-1995年7月5日)是日本政治家。1976年12月24日至1978年12月6日出任第67届日本内阁总理大臣(首相)。出生于群马县
  • 曝光值在摄影中,曝光值(Exposure Value,EV)代表能够给出同样曝光的所有相机光圈快门组合。这一概念是在一九五零年代在德国发展起来的,被试图用以简化在等价的拍摄参数之间进行选择的过
  • 鸟龙鸟科鸟龙鸟科(学名:Avisauridae)是白垩纪时期北美洲及南美洲的一科反鸟亚纲鸟类,其下有8个属。鸟龙鸟科是于1985年成立,包含了一些最初被认为是细小兽脚亚目恐龙的化石。路易斯·恰佩
  • 孟加拉国解放战争孟加拉国与印度胜利孟加拉国巴基斯坦准军事力量:巴基斯坦战斗部队:~365,000人巴基斯坦 8,000人 阵亡 10,000人 受伤 93,000人 被俘(武装部队56,694人准军事部队12,192人其他为平
  • 环意自行车赛环意自行车赛(意大利语: Giro d'Italia)是公路自行车运动界中的年度大赛,UCI的三大自行车环赛之一。起初,是米兰体育报为了增加销量而在1909年透过借贷与募款举办,然而目前则由RC
  • 前557年